Effect of clay content and clay/surfactant on the mechanical, thermal and barrier properties of polystyrene/organoclay nanocomposites

Springer Science and Business Media LLC - Tập 18 - Trang 843-857 - 2010
Artee Arora1, Veena Choudhary2, D. K. Sharma1
1Centre for Energy Studies, Indian Institute of Technology, New Delhi, India
2Centre for Polymer Science and Engineering, Indian Institute of Technology, New Delhi, India

Tóm tắt

In the present paper, three ammonium salts namely, tetraethylammonium bromide (TEAB), tetrabutylammonium bromide (TBAB), and cetyltrimethylammonium bromide (CTAB) were employed to prepare organoclay by cation exchange process. Polystyrene (PS) /clay nanocomposites were prepared by melt blending using commercial nanoclay and organoclays prepared using above mentioned salts. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis indicated that the modified clays were intercalated and/or exfoliated into the polystyrene matrix to a higher extent than the commercial nanoclay. Further, amongst the modified organoclays, TBAB modified clay showed maximum intercalation of clay layers and also exfoliation to some extent into the polystyrene matrix. TEM micrograph exhibited that TBAB modified clay had the best nanoscale dispersion with clay platelet thickness of ∼6–7 nm only. The mechanical properties of the nanocomposites such as tensile, flexural and izod impact strength were measured and analyzed in relation to their morphology. We observed a significant improvement in the mechanical properties of polystyrene/clay nanocomposites prepared with modified clays as compared to commercial organoclay, which followed the order as; PS/TBAB system > PS/CTAB system > PS/TEAB system. Thermogravimetric analysis (TGA) demonstrated that T10, T50 and Tmax were more in case of polystyrene nanocomposites prepared using modified organoclays than nanoclay [nanolin DK4] and maximum being in the case of PS/CTAB system. The results of Differential Scanning Calorimetry (DSC) confirmed that the glass transition temperature of all the nanocomposites was higher as compared to neat polystyrene. The nanocomposites having 2% of TBAB modified clay showed better oxygen barrier performance as compared to polystyrene.

Tài liệu tham khảo

Bhiwankar NN, Weiss RA (2006) Polymer 47:6684–6691 Messersmith PB, Giannelis EP (1994) Chem Mater 6:1719–1725 Wang MS, Pinnavaia TJ (1994) Chem Mater 6:468–474 Hasegawa N, Okamoto H, Kawasumi M, Usuki A (1999) J Appl Polym Sci 74:3359–3364 Burmistr MV, Sukhyy KM, Shilov VV, Pissis P, Spanoudaki A, Sukha IV, Tomilo VI, Gomza YP (2005) Polymer 46:12226–12232 Su S, Jiang DD, Wilkie CA (2004) Polym Degrad Stab 84:269–277 Su S, Wilkie CA (2003) J Polym Sci Part A: Polym Chem 41:1124–1135 Kong Q, Lv R, Zhang S (2008) J Polym Res 15:453–458 Dazhu C, Haiyang Y, Pingsheng H, Weian Z (2005) Compos Sci Technol 65:1593–1600 Lan T, Kaviratna PD, Pinnavaia TJ (1994) Chem Mater 6:573–575 Chen G, Liu S, Chen S, Qi Z (2001) Macromol Chem Phys 202:1189–1193 Essawy HA, Badran AS, Youssef AM, Hakim A (2004) Macromol Chem Phys 205:2366–2370 He J, Shen Y, Evans DG (2008) Microporous Mesoporous Mater 109:73–83 Ren J, Casanueva BF, Mitchell CA, Krishnamoorti R (2003) Macromolecules 36:4188–4194 Morgan AB, Harris JD (2004) Polymer 45:8695–8703 Zha W, Choi S, Lee KM, Han CD (2005) Macromolecules 38:8418–8429 Shi S, Zhang L, Li J (2009) J Polym Res 16:395–399 Chiu F, Chu P (2006) J Polym Res 13:73–78 Dimitry QIH, Abdeen ZI, Ismail EA, Saad ALG (2009) J Polym Res. doi:10.1007/s10965-009-9371-Y Turri S, Alborghetti L, Levi M (2008) J Polym Res 15:365–372 Mirmohseni A, Zavareh S (2010) J Polym Res 17:191–201 Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW (2001) Polymer 42:9513–9522 Nshuti C, Wilkie CA (2007) Polym Degrad Stab 92:1803–1812 Mukherji M, Bose S, Nayak GC, Das CK (2010) J Polym Res 17:265–272 As’habi L, Jafari SH, Khonakdar HA, Baghaei B (2010) J Polym Res. doi:10.1007/s10965-010-9407-3 Chow WS, Ooi KH (2007) Malaysian Polym J 2:1–9 Frankowski DJ, Capracotta MD, Martin JD, Khan SA, Spontak RJ (2007) Chem Mater 19:2757–2767 Gilman JW, Awad WH, Davis RD, Shields J, Harris RH Jr, Davis C, Morgan AB, Sutto TE, Callahan J, Trulove PC, Dulong HC (2002) Chem Mater 14:3776–3785 Stretz HA, Paul DR (2006) Polymer 47:8527–8535 Ishida H, Campbell S, Blackwell J (2000) Chem Mater 12:1260–1267 Li LY, Li CY, Ni CY, Rong LX, Hsiao B (2007) Polymer 48:3452–3460 Marales-Teyssier O, Sanchez-Valdes S, Ramos-de Valle LF (2006) Macromol Mater Eng 291:1547–1555 Gryshchuk O, Karger-Koesis J, Thomann R, Konya Z, Kiriesi J (2006) Compos Part A 37:1252–1259 Ghose S, Watson KA, Delozuer DM, Working DC, Siochi EJ, Connell JW (2006) Compos Part A 37:465–475 Mrozek RA, Kim BS, Holmberg VC, Taton TA (2003) Nano Lett 3:1665–1669 Bliznyuk VN, Singamaneni S, Sangford RL, Chiappetta D, Crooker B, Shibaev PV (2006) Polymer 47:3915–3921 Zhao B, Hu H, Haddon RC (2004) Adv Funct Mater 14:71–76 Ago H, Petritseh K, Shaffer MSP, Windle AH, Friend RH (1999) Adv Mater 11:1281–1285 Sonawane S, Chaudhari P, Ghodke S, Ambade S, Gulig S, Mirikar A, Bane A (2008) Ultrason Sonochem 15:1033–1037 Garcia-Lopez D, Gobernado-mitre I, Fernandez JF, Merin JC, Paslor JM (2005) Polymer 46:2758–2765 Dong Y, Bhattacharyya D (2008) Composites: Part A 39:1177–1191 Brostow W, Hagg Lobland HE (2008) Predicting wear from mechanical properties of thermoplastic polymers. Polym Eng Sci 48:1982–1985 Rabello M (2000) Aditivacao de polimeros, Artliber, Sao Paulo, pp 242–247 Maiti SN, Singh G, Ibrahim MN, Appl J (2003) Polym Sci 87:1511–1518 Osman MA, Atallah A, Schweizer T, Ottinger HC (2004) J Rheol 48:1167–1184 Mishra S, Sonawane S, Mukherji A, Mruthyun-jaya HC (2006) J Appl Polym Sci 100:4190–4196 Brostow W, Gorman BP, Olea-Mejia O (2007) Mater Lett 61:1333–1336 Zhelezny L, Kobylyansky Y, Mishchuk O (2007) Chem Technol 1:97–101