Defect Engineering toward Atomic Co–Nx–C in Hierarchical Graphene for Rechargeable Flexible Solid Zn‐Air Batteries

Advanced Materials - Tập 29 Số 37 - 2017
Cheng Tang1, Bin Wang1, Haofan Wang1, Qiang Zhang1
1Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China

Tóm tắt

Rechargeable flexible solid Zn‐air battery, with a high theoretical energy density of 1086 Wh kg−1, is among the most attractive energy technologies for future flexible and wearable electronics; nevertheless, the practical application is greatly hindered by the sluggish oxygen reduction reaction/oxygen evolution reaction (ORR/OER) kinetics on the air electrode. Precious metal‐free functionalized carbon materials are widely demonstrated as the most promising candidates, while it still lacks effective synthetic methodology to controllably synthesize carbocatalysts with targeted active sites. This work demonstrates the direct utilization of the intrinsic structural defects in nanocarbon to generate atomically dispersed Co–Nx–C active sites via defect engineering. As‐fabricated Co/N/O tri‐doped graphene catalysts with highly active sites and hierarchical porous scaffolds exhibit superior ORR/OER bifunctional activities and impressive applications in rechargeable Zn‐air batteries. Specifically, when integrated into a rechargeable and flexible solid Zn‐air battery, a high open‐circuit voltage of 1.44 V, a stable discharge voltage of 1.19 V, and a high energy efficiency of 63% at 1.0 mA cm−2 are achieved even under bending. The defect engineering strategy provides a new concept and effective methodology for the full utilization of nanocarbon materials with various structural features and further development of advanced energy materials.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201603436

10.1002/adma.201504225

10.1002/adma.201400910

10.1039/c4ee00318g

10.1016/j.ensm.2016.02.003

10.1142/S1793604716300012

10.1002/adma.201702327

10.1039/C4CS00015C

10.1002/adma.201301870

10.1002/aenm.201000010

10.1002/adma.201404639

10.1002/anie.201508848

10.1021/jacs.6b05046

10.1002/aenm.201600476

10.1002/adma.201600762

10.1002/adma.201502853

10.1002/adma.201602868

10.1039/C5EE03404C

10.1002/adma.201604685

10.1039/C3CS60248F

10.1039/c1cs15228a

10.1016/j.jechem.2016.11.003

10.1039/C6TA00173D

10.1002/smll.201700610

10.1126/science.1168049

10.1126/sciadv.1501122

10.1002/adma.201506112

10.1038/ncomms3390

10.1002/adma.201604103

10.1038/nnano.2015.48

10.1016/j.jcat.2014.03.011

10.1002/adma.201302753

10.1021/jp201991j

10.1021/acscatal.5b01835

10.1002/adma.201601406

10.1039/C5CP02014J

10.1002/adma.201606459

10.1002/adma.201701546

10.1021/acsnano.6b01247

10.1021/jp511515q

10.1002/anie.201610119

10.1039/C6TA01062H

10.1002/adma.201501901

10.1039/c3ta12142a

10.1002/adma.201305608

10.1021/ja509879r

10.1021/acsami.6b11927

10.1039/c3cc40324f

10.1149/2.022211jes

10.1002/smll.201303715

10.1016/j.nanoen.2015.11.030

10.1021/acsami.5b01025

10.1021/acsami.5b02670

10.1002/aenm.201301389

10.1016/j.nanoen.2015.02.025

10.1021/acsnano.7b00417

10.1002/adfm.201606034

10.1002/aenm.201601172

10.1038/ncomms2812

10.1016/j.chempr.2017.03.016