Geology, environment, and life in the deepest part of the world’s oceans
Tài liệu tham khảo
Jamieson, 2010, Hadal trenches: the ecology of the deepest places on Earth, Trend Ecol. Evol., 25, 190, 10.1016/j.tree.2009.09.009
Stern, 2021, Ocean Trenches, 845
Stern, 2002, Subduction zones, Rev. Geophys., 40, 3-1, 10.1029/2001RG000108
Fryer, 1999, Mariana blueschist mud volcanism: Implications for conditions within the subduction zone, Geology, 27, 103, 10.1130/0091-7613(1999)027<0103:MBMVIF>2.3.CO;2
Grellet, 1982, The depth of trenches as a function of the subduction rate and age of the lithosphere, Tectonophysics, 82, 45, 10.1016/0040-1951(82)90087-7
Bry, 2007, Reappraising elastic thickness variation at oceanic trenches, J. Geophys. Res. Solid Earth, 112, B08414, 10.1029/2005JB004190
Stewart, 2018, Habitat heterogeneity of hadal trenches: Considerations and implications for future studies, Prog. Oceanogr., 161, 47, 10.1016/j.pocean.2018.01.007
Wolff, 1959, The hadal community, an introduction, Deep-Sea Res., 6, 95
Spärck, R. (1952). Revealing the secrets of the deep. The Galathea Expedition of 1950-52. Dan For Off J. 6, 1-6.
Jamieson, 2009, HADEEP: free-falling landers to the deepest places on Earth, Mar. Technol. Soc. J., 43, 151, 10.4031/MTSJ.43.5.17
ZoBell, 1952, Bacterial life at the bottom of the Philippine Trench, Science, 115, 507, 10.1126/science.115.2993.507
Yayanos, 1995, Microbiology to 10,500 meters in the deep sea, Annu. Rev. Microbiol., 49, 777, 10.1146/annurev.mi.49.100195.004021
Tamburini, 2013, Prokaryotic responses to hydrostatic pressure in the ocean--a review, Environ. Microbiol., 15, 1262, 10.1111/1462-2920.12084
Nunoura, 2015, Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth, Proc. Natl. Acad. Sci. U S A, 112, E1230, 10.1073/pnas.1421816112
Hiraoka, 2019, Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments, ISME J., 14, 1
Jamieson, 2009, Liparid and macrourid fishes of the hadal zone: in situ observations of activity and feeding behaviour, Proc. Biol. Sci., 276, 1037
Todo, 2005, Simple Foraminifera flourish at the ocean's deepest point, Science, 307, 689, 10.1126/science.1105407
Wolff, 1970, The concept of the hadal or ultra-abyssal fauna, Deep Sea Research and Oceanographic Abstracts, 17, 983, 10.1016/0011-7471(70)90049-5
Angel, 1982, Ocean trench conservation, Environmentalist, 2, 1, 10.1007/BF02340472
Liu, 2018, The hadal biosphere: Recent insights and new directions, Deep Sea Res. Part II, 155, 11, 10.1016/j.dsr2.2017.04.015
Fujioka, 2002, Morphology and origin of the Challenger Deep in the southern Mariana Trench, Geophys. Res. Lett., 29, 1372, 10.1029/2001GL013595
Ranero, 2003, Bending-related faulting and mantle serpentinization at the Middle America trench, Nature, 425, 367, 10.1038/nature01961
Grevemeyer, 2005, Heat flow and bending-related faulting at subduction trenches: Case studies offshore of Nicaragua and central Chile, Earth Planet. Sci. Lett., 236, 238, 10.1016/j.epsl.2005.04.048
Taira, 2005, Deep CTD casts in the Challenger Deep, Mariana Trench, J. Oceanogr., 61, 447, 10.1007/s10872-005-0053-z
Kawagucci, 2018, Hadal water biogeochemistry over the Izu–Ogasawara Trench observed with a full-depth CTD-CMS, Ocean Sci., 14, 575, 10.5194/os-14-575-2018
Danovaro, 2003, A depocenter of organic matter at 7800m depth in the SE Pacific Ocean, Deep Sea Res. Part I, 50, 1411, 10.1016/j.dsr.2003.07.001
Glud, 2013, High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth, Nat. Geosci., 6, 284, 10.1038/ngeo1773
Leduc, 2018, Nematode communities in sediments of the Kermadec Trench, southwest Pacific Ocean, Deep Sea Res. Part I, 134, 23, 10.1016/j.dsr.2018.03.003
Luo, 2018, Benthic carbon mineralization in hadal trenches: insights from in situ determination of benthic oxygen consumption, Geophys. Res. Lett., 45, 2752, 10.1002/2017GL076232
Luo, 2019, Sources, degradation, and transport of organic matter in the New Britain Shelf-Trench Continuum, Papua New Guinea, J. Geophys. Res. Biogeosci., 124, 1680, 10.1029/2018JG004691
Glud, R., Thamdrup, B., Zabel, M., et al. (2020) Deposition and early diagenesis of organic material in hadal trenches. In Ocean Sciences Meeting 2020. AGU.
Thamdrup, B., Schauberger, C., Larsen, M., et al. (2020) Benthic nitrogen cycling in hadal trenches: High rates and large contributions from anammox. In Ocean Sciences Meeting 2020. AGU.
Jamieson, 2018, A contemporary perspective on hadal science, Deep Sea Res. Part II, 155, 4, 10.1016/j.dsr2.2018.01.005
Liu, 2020, Methylmercury bioaccumulation in deepest ocean fauna: implications for ocean mercury biotransport through food webs, Environ. Sci. Technol. Lett., 7, 469, 10.1021/acs.estlett.0c00299
Peng, 2018, Microplastics contaminate the deepest part of the world’s ocean, Geochem. Perspect. Lett., 9, 1, 10.7185/geochemlet.1829
Peacock, 2001, Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle?, Geology, 29, 299, 10.1130/0091-7613(2001)029<0299:ATLPOD>2.0.CO;2
Faccenda, 2009, Deep slab hydration induced by bending-related variations in tectonic pressure, Nat. Geosci., 2, 790, 10.1038/ngeo656
Ranero, 2004, Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile Trench, Geology, 32, 549, 10.1130/G20379.1
Grevemeyer, 2007, Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench, Earth Planet. Sci. Lett., 258, 528, 10.1016/j.epsl.2007.04.013
Naif, 2015, Water-rich bending faults at the Middle America Trench, Geochem. Geophys. Geosyst., 16, 2582, 10.1002/2015GC005927
Contreras-Reyes, 2008, Upper lithospheric structure of the subduction zone offshore of southern Arauco Peninsula, Chile, at ∼38°S, J. Geophys. Res. Solid Earth, 113, B07303, 10.1029/2007JB005569
Wan, 2019, Deep seismic structure across the southernmost Mariana Trench: implications for arc rifting and plate hydration, J. Geophys. Res. Solid Earth, 124, 4710, 10.1029/2018JB017080
Eimer, 2020, Seismicity of the incoming plate and forearc near the Mariana Trench recorded by ocean bottom seismographs, Geochem. Geophys. Geosyst., 21, 10.1029/2020GC008953
Van Avendonk, 2011, Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica, Geochem. Geophys. Geosyst., 12, 1, 10.1029/2011GC003592
Lefeldt, 2012, Seismic evidence of tectonic control on the depth of water influx into incoming oceanic plates at subduction trenches, Geochem. Geophys. Geosyst., 13, 1, 10.1029/2012GC004043
Bostock, 2002, An inverted continental Moho and serpentinization of the forearc mantle, Nature, 417, 536, 10.1038/417536a
Reynard, 2013, Serpentine in active subduction zones, Lithos, 178, 171, 10.1016/j.lithos.2012.10.012
Kamimura, 2002, Crustal structure study at the Izu-Bonin subduction zone around 31°N: implications of serpentinized materials along the subduction plate boundary, Phys. Earth Planet. Inter., 132, 105, 10.1016/S0031-9201(02)00047-X
Tibi, 2008, Seismic evidence for widespread serpentinized forearc mantle along the Mariana convergence margin, Geophys. Res. Lett., 35, L13303, 10.1029/2008GL034163
Kirby, 1996, Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs, Vol. 96, 195
Kerrick, 2001, Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle, Nature, 411, 293, 10.1038/35077056
Kerrick, 2001, Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling, Earth Planet. Sci. Lett., 189, 19, 10.1016/S0012-821X(01)00347-8
Moore, 2001, Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress, Geology, 29, 183, 10.1130/0091-7613(2001)029<0183:ULOTSZ>2.0.CO;2
Fryer, 2006, Variability in serpentinite mudflow mechanisms and sources: ODP drilling results on Mariana forearc seamounts, Geochem. Geophys. Geosyst., 7, 1, 10.1029/2005GC001201
Fryer, 2012, Serpentinite mud volcanism: Observations, processes, and implications, Annu. Rev. Mar. Sci., 4, 345, 10.1146/annurev-marine-120710-100922
Kerrick, 2002, Serpentinite seduction, Science, 298, 1344, 10.1126/science.298.5597.1344
Ohara, 2012, A serpentinite-hosted ecosystem in the southern Mariana forearc, Proc. Natl. Acad. Sci. U S A, 109, 2831, 10.1073/pnas.1112005109
Ogawa, 1996, En echelon patterns of Calyptogena colonies in the Japan Trench, Geology, 24, 807, 10.1130/0091-7613(1996)024<0807:EEPOCC>2.3.CO;2
Du, 2019, Fluid discharge linked to bending of the incoming plate at the Mariana subduction zone, Geochem. Perspect. Lett., 11, 1, 10.7185/geochemlet.1916
Peng, 2020, Past endolithic life in metamorphic ocean crust, Geochem. Perspect. Lett., 14, 14, 10.7185/geochemlet.2017
Oguri, 2013, Hadal disturbance in the Japan Trench induced by the 2011 Tohoku–Oki earthquake, Sci. Rep., 3, 1915, 10.1038/srep01915
McHugh, 2016, Remobilization of surficial sediment triggered by the A.D. 2011 Mw9 Tohoku-Oki earthquake and tsunami along the Japan Trench, Geology, 44, 391, 10.1130/G37650.1
Evans, 2012, The redox budget of subduction zones, Earth Sci. Rev., 113, 11, 10.1016/j.earscirev.2012.03.003
Kelemen, 2015, Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up, Proc. Natl. Acad. Sci. U S A, 112, E3997, 10.1073/pnas.1507889112
Kelley, 2001, An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N, Nature, 412, 145, 10.1038/35084000
Kelley, 2005, A serpentinite-hosted ecosystem: The Lost City hydrothermal field, Science, 307, 1428, 10.1126/science.1102556
Michibayashi, 2009, Peridotites from a ductile shear zone within back-arc lithospheric mantle, southern Mariana Trench: Results of a Shinkai 6500 dive, Geochem. Geophys. Geosyst., 10, Q05X06, 10.1029/2008GC002197
Reagan, 2013, The geology of the southern Mariana fore-arc crust: Implications for the scale of Eocene volcanism in the western Pacific, Earth Planet. Sci. Lett., 380, 41, 10.1016/j.epsl.2013.08.013
Nan, 2020, The nanogeochemistry of abiotic carbonaceous matter in serpentinites from the Yap Trench, western Pacific Ocean, Geology, 49, 330, 10.1130/G48153.1
Onishi, 2018, Evaluation of nutrient and energy sources of the deepest known serpentinite-hosted ecosystem using stable carbon, nitrogen, and sulfur isotopes, PLoS One, 13, e0199000, 10.1371/journal.pone.0199000
Hand, 2020, Discovery of novel structures at 10.7 km depth in the Mariana Trench may reveal chemolithoautotrophic microbial communities, Deep Sea Res. Part I, 160, 103238, 10.1016/j.dsr.2020.103238
Edwards, 1938, The formation of iddingsite, Am. Mineral., 23, 277
Kuebler, 2013, A comparison of the iddingsite alteration products in two terrestrial basalts and the Allan Hills 77005 Martian meteorite using Raman spectroscopy and electron microprobe analyses, J. Geophys. Res. Planets, 118, 803, 10.1029/2012JE004243
Stevens, 1995, Lithoautotrophic microbial ecosystems in deep basalt aquifers, Science, 270, 450, 10.1126/science.270.5235.450
Mayhew, 2013, Hydrogen generation from low-temperature water-rock reactions, Nat. Geosci., 6, 478, 10.1038/ngeo1825
Torsvik, 1998, Evidence for microbial activity at the glass-alteration interface in oceanic basalts, Earth Planet. Sci. Lett., 162, 165, 10.1016/S0012-821X(98)00164-2
Furnes, 1999, Biological mediation in ocean crust alteration: how deep is the deep biosphere?, Earth Planet. Sci. Lett., 166, 97, 10.1016/S0012-821X(99)00005-9
Furnes, 2008, Oceanic pillow lavas and hyaloclastites as habitats for microbial life through time - a review, 1
Plümper, 2017, Subduction zone forearc serpentinites as incubators for deep microbial life, Proc. Natl. Acad. Sci. U S A, 114, 4324, 10.1073/pnas.1612147114
Suess, 2018, Marine cold seeps: background and recent advances, 1
Yoshihiro, 2001, Dual symbiosis in the cold-seep thyasirid clam Maorithyas hadalis from the hadal zone in the Japan Trench, western Pacific, Mar. Ecol. Prog. Ser., 214, 151, 10.3354/meps214151
Eloe, 2011, Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment, Environ. Microbiol. Rep., 3, 449, 10.1111/j.1758-2229.2010.00223.x
Jamieson, 2015
Ishiwatari, 2000, Source of organic matter in sinking particles in the Japan Trench: molecular composition and carbon isotopic analyses, 141
Li, 2020, Spatial heterogeneity of organic carbon cycling in sediments of the northern Yap Trench: Implications for organic carbon burial, Mar. Chem., 223, 103813, 10.1016/j.marchem.2020.103813
Luo, 2017, Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: Implication for carbon cycle and burial in hadal trenches, Mar. Geol., 386, 98, 10.1016/j.margeo.2017.02.012
Gallo, 2015, Submersible- and lander-observed community patterns in the Mariana and New Britain trenches: Influence of productivity and depth on epibenthic and scavenging communities, Deep Sea Res. Part I, 99, 119, 10.1016/j.dsr.2014.12.012
Katsunori, 1999, The deepest chemosynthesis-based community yet discovered from the hadal zone, 7326 m deep, in the Japan Trench, Mar. Ecol. Prog. Ser., 190, 17, 10.3354/meps190017
Stern, 2006, Subduction factory processes beneath the Guguan cross-chain, Mariana Arc: no role for sediments, are serpentinites important?, Contrib. Mineral. Petrol., 151, 202, 10.1007/s00410-005-0055-2
Chen, 2020, Characteristics and implications of isoprenoid and hydroxy tetraether lipids in hadal sediments of Mariana and Yap Trenches, Chem. Geol., 551, 119742, 10.1016/j.chemgeo.2020.119742
Xiao, 2020, Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the Mariana Trench: source and environmental implication, Biogeosciences, 17, 2135, 10.5194/bg-17-2135-2020
Xu, 2020, Glycerol dialkyl glycerol tetraethers in surface sediments from three Pacific trenches: Distribution, source and environmental implications, Org. Geochem., 147, 104079, 10.1016/j.orggeochem.2020.104079
Ta, 2019, Distributions and sources of glycerol dialkyl glycerol tetraethers in sediment cores from the Mariana subduction zone, J. Geophys. Res. Biogeosci., 124, 857, 10.1029/2018JG004748
Harry, 1995, The mechanics of deep earthquakes, Annu. Rev. Earth Planet. Sci., 23, 169, 10.1146/annurev.ea.23.050195.001125
Dobson, 2002, Simulation of subduction zone seismicity by dehydration of serpentine, Science, 298, 1407, 10.1126/science.1075390
Kioka, 2019, Event stratigraphy in a hadal oceanic trench: The Japan Trench as sedimentary archive recording recurrent giant subduction zone earthquakes and their role in organic carbon export to the deep sea, Front. Earth. Sci., 7, 319, 10.3389/feart.2019.00319
Bao, 2018, Tectonically-triggered sediment and carbon export to the hadal zone, Nat. Commun., 9, 121, 10.1038/s41467-017-02504-1
Kioka, 2019, Megathrust earthquake drives drastic organic carbon supply to the hadal trench, Sci. Rep., 9, 1, 10.1038/s41598-019-38834-x
Longhurst, 1995, An estimate of global primary production in the ocean from satellite radiometer data, J. Plankton Res., 17, 1245, 10.1093/plankt/17.6.1245
Itou, 2000, A large flux of particulate matter in the deep Japan Trench observed just after the 1994 Sanriku-Oki earthquake, Deep Sea Res. Part I, 47, 1987, 10.1016/S0967-0637(00)00012-1
Turnewitsch, 2014, Recent sediment dynamics in hadal trenches: Evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics, Deep Sea Res. Part I, 90, 125, 10.1016/j.dsr.2014.05.005
Wenzhöfer, 2016, Benthic carbon mineralization in hadal trenches: Assessment by in situ O2 microprofile measurements, Deep Sea Res. Part I, 116, 276, 10.1016/j.dsr.2016.08.013
Nunoura, 2013, Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments, Environ. Microbiol., 15, 3087, 10.1111/1462-2920.12152
Nunoura, 2018, Microbial diversity in sediments from the bottom of the Challenger Deep, the Mariana Trench, Microbes Environ., 33, 186, 10.1264/jsme2.ME17194
Liu, 2019, Organic matter diagenesis in hadal setting: Insights from the pore-water geochemistry of the Mariana Trench sediments, Deep Sea Res. Part I, 147, 22, 10.1016/j.dsr.2019.03.011
Nunoura, 2016, Distribution and niche separation of planktonic microbial communities in the water columns from the surface to the hadal waters of the Japan Trench under the eutrophic ocean, Front. Microbiol., 7, 1261, 10.3389/fmicb.2016.01261
Chiba, 2018, Human footprint in the abyss: 30 year records of deep-sea plastic debris, Marine Policy, 96, 204, 10.1016/j.marpol.2018.03.022
Peoples, 2019, Microbial community diversity within sediments from two geographically separated hadal trenches, Front. Microbiol., 10, 347, 10.3389/fmicb.2019.00347
Eloe, 2011, Going deeper: metagenome of a hadopelagic microbial community, PLoS One, 6, e20388, 10.1371/journal.pone.0020388
Ichino, 2015, The distribution of benthic biomass in hadal trenches: A modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor, Deep Sea Res. Part I, 100, 21, 10.1016/j.dsr.2015.01.010
Tarn, 2016, Identification of free-living and particle-associated microbial communities present in hadal regions of the Mariana Trench, Front. Microbiol., 7, 665, 10.3389/fmicb.2016.00665
Liu, 2019, Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench, Microbiome, 7, 47, 10.1186/s40168-019-0652-3
Liu, 2018, Watermass properties and deep currents in the northern Yap Trench observed by the submersible Jiaolong system, Deep Sea Res. Part I, 139, 27, 10.1016/j.dsr.2018.06.001
Fu, 2020, Characteristics of the archaeal and bacterial communities in core sediments from southern Yap Trench via in situ sampling by the manned submersible Jiaolong, Sci. Total Environ., 703, 134884, 10.1016/j.scitotenv.2019.134884
Liu, 2020, Bulk and active sediment prokaryotic communities in the Mariana and Mussau Trenches, Front. Microbiol., 11, 1521, 10.3389/fmicb.2020.01521
Nielsen, 1964, Fishes from depths exceeding 6000 meters, Galathea Rep, 7, 113
Wang, 2019, Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation, Nat. Ecol. Evol., 3, 823, 10.1038/s41559-019-0864-8
Gerringer, 2017, Comparative feeding ecology of abyssal and hadal fishes through stomach content and amino acid isotope analysis, Deep Sea Res. Part I, 121, 110, 10.1016/j.dsr.2017.01.003
Gerringer, 2019, On the success of the hadal snailfishes, Integrative Organismal Biology, 1, 1, 10.1093/iob/obz004
Gerringer, 2017, Distribution, composition and functions of gelatinous tissues in deep-sea fishes, R. Soc. Open Sci., 4, 171063, 10.1098/rsos.171063
Blankenship, 2006, Vertical zonation patterns of scavenging amphipods from the hadal zone of the Tonga and Kermadec Trenches, Deep Sea Res. Part I, 53, 48, 10.1016/j.dsr.2005.09.006
Blankenship, 2007, Extreme food webs: Foraging strategies and diets of scavenging amphipods from the ocean’s deepest 5 kilometers, Limnol. Oceanogr., 52, 1685, 10.4319/lo.2007.52.4.1685
Li, 2018, Advances of living environment characteristics and biogeochemical processes in the hadal zone, J. China Univ. Geosci., 43, 1
Lemche, 1976, hadal life as analysed from photographs, Vidensk Meddr Dansk Naturh Foren, 139, 263
George, 1979, Eutrophic hadal benthic community in the Puerto Rico Trench, Ambio Special Report, 6, 51
Smith, 2003, The deep Pacific Ocean floor, 179
Kobayashi, 2012, The hadal Amphipod Hirondellea gigas possessing a unique cellulase for digesting wooden debris buried in the deepest seafloor, PLoS One, 7, e42727, 10.1371/journal.pone.0042727
Kobayashi, 2018, Polysaccharide hydrolase of the hadal zone amphipods Hirondellea gigas, Biosci., Biotechnol., Biochem., 82, 1123, 10.1080/09168451.2018.1459178
Lan, 2017, Molecular adaptation in the world's deepest-living animal: Insights from transcriptome sequencing of the hadal amphipod Hirondellea gigas, Mol. Ecol., 26, 3732, 10.1111/mec.14149
Yancey, 2014, Marine fish may be biochemically constrained from inhabiting the deepest ocean depths, Proc. Natl. Acad. Sci. U S A, 111, 4461, 10.1073/pnas.1322003111
Jambeck, 2015, Marine pollution. Plastic waste inputs from land into the ocean, Science, 347, 768, 10.1126/science.1260352
Peng, 2019, Large debris dumps in the northern South China Sea, Mar. Pollut. Bull., 142, 164, 10.1016/j.marpolbul.2019.03.041
Lee, 2012, Ocean's deep, dark trenches to get their moment in the spotlight, Science, 336, 141, 10.1126/science.336.6078.141
Miyake, 2011, Deep-sea litter study using deep-sea observation tools, Vol. 5, 261
Tsang, 2017, Microplastic pollution in the marine waters and sediments of Hong Kong, Mar. Pollut. Bull., 115, 20, 10.1016/j.marpolbul.2016.11.003
Van Cauwenberghe, 2013, Microplastic pollution in deep-sea sediments, Environ. Pollut., 182, 495, 10.1016/j.envpol.2013.08.013
Chen, 2020, Forty-year pollution history of microplastics in the largest marginal sea of the western Pacific, Geochem. Perspect. Lett., 13, 42, 10.7185/geochemlet.2012
Fischer, 2015, Plastic pollution of the Kuril–Kamchatka Trench area (NW pacific), Deep Sea Res., Part II, 111, 399, 10.1016/j.dsr2.2014.08.012
Jamieson, 2019, Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth, R. Soc. Open Sci., 6, 180667, 10.1098/rsos.180667
GESAMP, 2016, Sources, fate and effects of microplastics in the marine environment: part two of a global assessment, Rep. Stud. GESAMP, 93, 220
Desforges, 2014, Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean, Mar. Pollut. Bull., 79, 94, 10.1016/j.marpolbul.2013.12.035
Goldstein, M., Rosenberg, M., and Cheng, L. (2012). Increased abundance and ecological implications of plastic microdebris in the North Pacific Subtropical Gyre. In 97th ESA Annual Convention.
Eriksen, 2013, Plastic pollution in the South Pacific Subtropical Gyre, Mar. Pollut. Bull., 68, 71, 10.1016/j.marpolbul.2012.12.021
Courtene-Jones, 2017, Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean, Environ. Pollut., 231, 271, 10.1016/j.envpol.2017.08.026
Bergmann, 2017, High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory, Environ. Sci. Technol., 51, 11000, 10.1021/acs.est.7b03331
Kanhai, 2018, Microplastics in sub-surface waters of the Arctic Central Basin, Mar. Pollut. Bull., 130, 8, 10.1016/j.marpolbul.2018.03.011
Woodall, 2014, The deep sea is a major sink for microplastic debris, R. Soc. Open Sci., 1, 140317, 10.1098/rsos.140317
Jamieson, 2017, Bioaccumulation of persistent organic pollutants in the deepest ocean fauna, Nat. Ecol. Evol., 1, 0051, 10.1038/s41559-016-0051
Kaiser, 2010, The dirt on ocean garbage patches, Science, 328, 1506, 10.1126/science.328.5985.1506
Wang, 2019, Penetration of bomb 14C into the deepest ocean trench, Geophys. Res. Lett., 46, 5413, 10.1029/2018GL081514
Lallas, 2001, The Stockholm Convention on Persistent Organic Pollutants, Am. J. Int. Law, 95, 692, 10.2307/2668517
Aichner, 2013, Levels and spatial distribution of persistent organic pollutants in the environment: a case study of German forest soils, Environ. Sci. Technol., 47, 12703, 10.1021/es4019833
Ma, 2015, Persistent organic pollutants in ocean sediments from the North Pacific to the Arctic Ocean, J. Geophys. Res. Oceans, 120, 2723, 10.1002/2014JC010651
Combi, 2016, Polychlorinated biphenyls (PCBs) in sediments from the western Adriatic Sea: Sources, historical trends and inventories, Sci. Total Environ., 562, 580, 10.1016/j.scitotenv.2016.04.086
Liu, 2018, Spatial distribution and seasonal variation of four current-use pesticides (CUPs) in air and surface water of the Bohai Sea, China. Sci. Total Environ., 621, 516, 10.1016/j.scitotenv.2017.11.282
Cui, 2020, Occurrence of halogenated organic pollutants in hadal trenches of the western Pacific Ocean, Environ. Sci. Technol., 54, 15821, 10.1021/acs.est.0c04995
Dasgupta, 2018, Toxic anthropogenic pollutants reach the deepest ocean on Earth, Geochem. Perspect. Lett., 7, 22, 10.7185/geochemlet.1814
Phillips, 1986, Use of organisms to quantify PCBs in marine and estuarine environments, 127
Li, 2015, Contrasting mechanisms of metoprolol uptake on kaolinite and talc, Chem. Eng. J., 272, 48, 10.1016/j.cej.2015.03.023
Bergquist, 2007, Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems, Science, 318, 417, 10.1126/science.1148050
Sun, 2020, Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna, Nat. Commun., 11, 1
Blum, 2020, Mercury isotopes identify near-surface marine mercury in deep-sea trench biota, Proc. Natl. Acad. Sci. U S A, 117, 29292, 10.1073/pnas.2012773117
Burger, 2006, Do scientists and fishermen collect the same size fish? Possible implications for exposure assessment, Environ. Res., 101, 34, 10.1016/j.envres.2005.07.003
Yang, 2018, Distribution and enrichment of trace metals in surface marine sediments collected by the manned submersible Jiaolong in the Yap Trench, northwest Pacific Ocean, Mar. Pollut. Bull., 135, 1035, 10.1016/j.marpolbul.2018.08.038
Welty, 2018, High-density element concentrations in fish from subtidal to hadal zones of the Pacific Ocean, Heliyon, 4, e00840, 10.1016/j.heliyon.2018.e00840