Phosphorylation of RAF Kinase Dimers Drives Conformational Changes that Facilitate Transactivation

Angewandte Chemie - International Edition - Tập 55 Số 3 - Trang 983-986 - 2016
Pablo G. Jambrina1,2, Nora Rauch3,2, Ruth Pilkington3, Katja N. Rybakova3, Lan K. Nguyen4,5, Boris Ν. Kholodenko3, Nicolae‐Viorel Buchete6, Walter Kölch7,3, Edina Rosta1
1Department of Chemistry, King's College London, London SE1 1DB, UK
2these authors contributed equally to this work
3Systems Biology Ireland and Conway Institute, University College Dublin, Belfield, Dublin, 4 Ireland
4Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, 3800 Australia
5Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland,
6School of Physics and Complex and Adaptative Systems Laboratory, University College Dublin, Belfield, Dublin, 4 Ireland
7School of Medicine & Medical Sciences University College Dublin, Belfield Dublin 4 Ireland

Tóm tắt

Abstract

RAF kinases are key players in the MAPK signaling pathway and are important targets for personalized cancer therapy. RAF dimerization is part of the physiological activation mechanism, together with phosphorylation, and is known to convey resistance to RAF inhibitors. Herein, molecular dynamics simulations are used to show that phosphorylation of a key N‐terminal acidic (NtA) motif facilitates RAF dimerization by introducing several interprotomer salt bridges between the αC‐helix and charged residues upstream of the NtA motif. Additionally, we show that the R‐spine of RAF interacts with a conserved Trp residue in the vicinity of the NtA motif, connecting the active sites of two protomers and thereby modulating the cooperative interactions in the RAF dimer. Our findings provide a first structure‐based mechanism for the auto‐transactivation of RAF and could be generally applicable to other kinases, opening new pathways for overcoming dimerization‐related drug resistance.

Từ khóa


Tài liệu tham khảo

10.1177/1947601911407323

10.1056/NEJMoa1103782

 

10.1016/j.cell.2009.12.040

10.1038/nature08833

10.1038/nature08902

10.1038/nature10662

 

10.1038/383178a0

Weber C. K., 2001, Cancer Res., 61, 3595

10.1128/MCB.26.6.2262-2272.2006

10.1016/j.molcel.2005.10.022

10.1039/C2MB25393C

 

10.1128/MCB.17.8.4509

10.1093/emboj/18.8.2137

10.1016/j.cell.2013.07.046

10.1093/emboj/20.14.3716

10.1158/0008-5472.CAN-05-1683

10.1074/jbc.M802855200

10.1021/jm3004416

 

10.1042/BST20140025

G. Sánchez-Sanz D. Matallanas L. K. Nguyen B. N. Kholodenko E. Rosta et al. Briefings Bioinf.2015 DOI:10.1093/bib/bbv070.

10.1021/jacs.5b01421

10.1074/jbc.M110.194167

10.1038/nature08314

 

10.1016/j.tibs.2010.09.006

10.1098/rstb.2012.0054

10.1063/1.464913

10.1016/j.cell.2006.05.013

10.1371/journal.pbio.1001680

10.1038/nrd3847

10.1073/pnas.0711741105

 

10.1093/nar/gkp569

10.1038/nsmb.2924

10.1021/jm300613w