Effects of oceanic circulation and volcanic ash-fall on calcite dissolution in bathyal sediments from the SW Pacific Ocean over the last 550ka

Palaeogeography, Palaeoclimatology, Palaeoecology - Tập 429 - Trang 72-82 - 2015
M. Cobianchi1, N. Mancin1, C. Lupi1, M. Bordiga1,2, H.C. Bostock3
1Dipartimento di Scienze della Terra e dell'Ambiente, Università degli Studi di Pavia, via Ferrata 1, 27100 Pavia, Italy
2Department of Earth Sciences, Uppsala Universitet, Villavägen 16, 75236 Uppsala, Sweden
3National Institute of Water and Atmospheric Research, Greta Point, Wellington, New Zealand

Tài liệu tham khảo

Allan, 2008, Reconstructing the Quaternary evolution of the world's most active silicic volcanic system: insights from a ~1.65Ma deep ocean tephra record sourced from Taupo Volcanic Zone, New Zealand, Quat. Sci. Rev., 27, 2341, 10.1016/j.quascirev.2008.09.003 Alloway, 2005, Onshore–offshore correlation of Pleistocene rhyolitic eruptions from New Zealand: implications for TVZ eruptive history and paleoenvironmental construction, Quat. Sci. Rev., 24, 1601, 10.1016/j.quascirev.2004.07.026 Anderson, 2008, Modern CaCO3 preservation in equatorial Pacific sediments in the context of late-Pleistocene glacial cycles, Mar. Chem., 111, 30, 10.1016/j.marchem.2007.11.011 Arrhenius, 1952, Sediment cores from the east Pacific, properties of the sediment, Rep. Swed. Deep-Sea Exped., 1957–1948, 189 Blunier, 1998, Asynchrony of Antarctic and Greenland climate change during the last glacial period, Nature, 394, 739, 10.1038/29447 Boeckel, 2004, Distribution of coccoliths in surface sediments of south-eastern South Atlantic Ocean: ecology, preservation and carbonate contribution, Mar. Micropaleontol., 51, 301, 10.1016/j.marmicro.2004.01.001 Bordiga, 2013, Calcareous nannofossils as dissolution and primary productivity proxies in the last 450ka (Shatsky Rise, NW Pacific Ocean), Palaeogeogr. Palaeoclimatol. Palaeoecol., 371, 93, 10.1016/j.palaeo.2012.12.021 Bostock, 2004, Carbon isotope evidence for changes in Antarctic Intermediate Water circulation and ocean ventilation in the southwest Pacific during the last deglaciation, Paleoceanography, 19, PA4013, 10.1029/2004PA001047 Bostock, 2011, Deep-water carbonate concentration in the Southwest Pacific, Deep-Sea Res. I, 58, 72, 10.1016/j.dsr.2010.11.010 Bostock, 2013, Reviewing the circulation and mixing of Antarctic Intermediate Water in the South Pacific using evidence from geochemical tracers and Argo float trajectory, Deep-Sea Res. I, 73, 84, 10.1016/j.dsr.2012.11.007 Boudreau, 2013, Carbonate dissolution rates at the deep ocean floor, Geophys. Res. Lett., 40, 1, 10.1029/2012GL054231 Boyd, 2000, A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization, Nature, 407, 695, 10.1038/35037500 Broecker, 1998, Paleocean circulation during the Last Deglaciation: a bipolar seesaw?, Paleoceanography, 13, 119, 10.1029/97PA03707 Broecker, 2003, The oceanic CaCO3 cycle, 529 Bryden, 2001, Ocean Heat Transport. In Ocean Circulation and Climate, 455 Carter, 1994, Development of sediment drifts approaching an active plate margin under the SW Pacific Deep Western Boundary Current, Paleoceanography, 9, 1061, 10.1029/94PA01444 Carter, 1995, Correlation, dispersal, and preservation of the Kawakawa Tephra and other late Quaternary tephra layers in the Southwest Pacific Ocean, N. Z. J. Geol. Geophys., 38, 29, 10.1080/00288306.1995.9514637 Carter, 2004, Deep-ocean records of major rhyolitic eruptions and dispersal from the Coromandel and Taupo Volcanic Zones of New Zealand, N. Z. J. Geol. Geophys., 47, 481, 10.1080/00288306.2004.9515071 Chiu, 2008, Toward better paleocarbonate ion reconstructions: new insights regarding the CaCO3 size index, Paleoceanography, 23, PA2216, 10.1029/2008PA001599 Cobianchi, 2012, Pleistocene biogeochemical record in the south-west Pacific Ocean (Images Site MD 97-2114, Chatham Rise), J. Quat. Sci., 27, 519, 10.1002/jqs.2542 Comeau, 2009, Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina), Biogeosciences, 6, 1877, 10.5194/bg-6-1877-2009 Conan, 2002, Quantifying carbonate dissolution and calibration of foraminiferal dissolution indices in the Somali Basin, Mar. Geol., 182, 325, 10.1016/S0025-3227(01)00238-9 Crundwell, 2008, Glacial–interglacial ocean climate variability from planktonic foraminifera during the Mid-Pleistocene transition in the temperate Southwest Pacific, ODP Site 1123, Palaeogeogr. Palaeoclimatol. Palaeoecol., 260, 202, 10.1016/j.palaeo.2007.08.023 Dittert, 2000, Carbonate dissolution in the South Atlantic Ocean: evidence from ultrastructure breakdown in Globigerina bulloides, Deep-Sea Res. I Oceanogr. Res. Pap., 47, 603, 10.1016/S0967-0637(99)00069-2 Dittert, 1999, Carbonate dissolution in the Deep-Sea: methods, quantification and paleoceanographic application, 255 Duggen, 2007, Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data, Geophys. Res. Lett., 34, L01612, 10.1029/2006GL027522 Elderfield, 2012, Evolution of ocean temperature and ice volume through the Mid-Pleistocene Climate Transition, Science, 337, 704, 10.1126/science.1221294 Emerson, 1981, Carbon fluxes at the sediment–water interface of the deep sea: calcium carbonate preservation, J. Mar. Res., 39, 139 Farrell, 1989, Climatic change and CaCO3 preservation an 800,000year bathymetric reconstruction from the central equatorial Pacific Ocean, Paleoceanography, 4, 447, 10.1029/PA004i004p00447 Frogner, 2001, Fertilizing potential of volcanic ash in ocean surface water, Geology, 29, 487, 10.1130/0091-7613(2001)029<0487:FPOVAI>2.0.CO;2 Girone, 2013, Calcareous plankton response to orbital and millennial-scale climate changes across the Middle Pleistocene in the western Mediterranean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 392, 105, 10.1016/j.palaeo.2013.09.005 Hales, 1996, Calcite dissolution in sediments of the Ontong-Java Plateau: in situ measurements of pore water O2 and pH, Glob. Biogeochem. Cycles, 10, 527, 10.1029/96GB01522 Hall, 2001, Intensified deep Pacific inflow and ventilation in Pleistocene glacial times, Nature, 412, 809, 10.1038/35090552 Hastie, 1986, Generalized additive models, Stat. Sci., 1, 297, 10.1214/ss/1177013604 Hayward, 2004, Benthic foraminiferal proxy evidence for the Neogene palaecoeanography history of the Southwest Pacific, east of New Zealand, Mar. Geol., 205, 147, 10.1016/S0025-3227(04)00022-2 Hayward, 2012, Recent New Zealand deep-water benthic foraminifera: taxonomy, ecologic distribution, biogeography, and use in paleoenvironmental assessment, GNS Sci. Mon., 26 Hodell, 2001, Late Pleistocene evolution of the ocean's carbonate system, Earth Planet. Sci. Lett., 192, 109, 10.1016/S0012-821X(01)00430-7 Honjo, 1976, Coccoliths: production, transportation and sedimentation, Mar. Micropaleontol., 1, 65, 10.1016/0377-8398(76)90005-0 Jahnke, 1997, CaCO3 dissolution in California continental margin sediments: the influence of organic matter remineralization, Geochim. Cosmochim. Acta, 61, 2587, 10.1016/S0016-7037(97)00184-1 Jones, 2008, Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments, Geochim. Cosmochim. Acta, 72, 3661, 10.1016/j.gca.2008.05.030 Lalicata, 2011, Pleistocene carbonate fluctuations in the eastern equatorial Pacific on glacial timescales: evidence from ODP Hole 1241, Mar. Micropaleontol., 79, 41, 10.1016/j.marmicro.2011.01.002 Le, 1992, Carbonate dissolution fluctuations in the western equatorial Pacific during the late Quaternary, Paleoceanography, 7, 21, 10.1029/91PA02854 Lea, 2005, Influence of volcanic shards on foraminiferal Mg/Ca in a core from the Galapagos region, Geochem. Geophys. Geosyst., 6, Q11P04, 10.1029/2005GC000970 Lisiecki, 2005, A Plio–Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20 Loubere, 2008, Carbonate preservation in marine sediments: mid to higher latitude quantitative proxies, Paleoceanography, 23, PA1209, 10.1029/2007PA001470 Lupi, 2009, Biostratigraphic correlation and paleoceanographic interpretation of Pleistocene calcareous nannofossils from the Subtropical Front to the Antarctic Divergence, Micropaleontology, 55, 383, 10.47894/mpal.55.4.04 Lupi, 2008, Integrated calcareous nannofossil and planktonic foraminiferal bioevents of the last 1.07Ma: a case study from the East New Zealand Pacific Ocean, Micropaleontology, 54, 463, 10.47894/mpal.54.5.05 Mancin, 2013, Can the morphology of deep-sea benthic foraminifera reveal what caused their extinction during the mid-Pleistocene Transition?, Mar. Micropaleontol., 104, 53, 10.1016/j.marmicro.2013.09.004 Mancin, 2015, The agglutinated foraminifera from the SW Pacific bathyal sediments of the last 550kyr: relationship with the deposition of tephra layers, Mar. Micropaleontol., 115, 39, 10.1016/j.marmicro.2014.12.004 Marino, 2009, Response of calcareous nannofossil assemblages to paleoenvironmental changes through the Mid-Pleistocene Revolution at Site 1090 (Southern Ocean), Palaeogeogr. Palaeoclimatol. Palaeoecol., 280, 333, 10.1016/j.palaeo.2009.06.019 Martin, 1994, Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean, Nature, 371, 123, 10.1038/371123a0 McCave, 1997, Sedimentation beneath the Deep Western Boundary Current off northern New Zealand, Deep-Sea Res., 44, 1203, 10.1016/S0967-0637(97)00011-3 McCave, 2008, Glacial–interglacial changes in water mass structure and flow in the SW Pacific Ocean, Quat. Sci. Rev., 27, 1886, 10.1016/j.quascirev.2008.07.010 Mekik, 2002, Organic carbon flux and organic carbon to calcite flux ratio recorded in deep-sea carbonates: demonstration and a new proxy, Glob. Biogeochem. Cycles, 16, 10.1029/2001GB001634 Mekik, 2010, Progress toward a multi-basin calibration for quantifying deep sea calcite preservation in the tropical/subtropical world ocean, Earth Planet. Sci. Lett., 299, 104, 10.1016/j.epsl.2010.08.024 Menviel, 2014, Atlantic–Pacific seesaw and its role in outgassing CO2 during Heinrich events, Paleoceanography, 29, 58, 10.1002/2013PA002542 Milliman, 1999, Biologically mediated dissolution of calcium carbonate above the chemical lysocline?, Deep-Sea Res. I, 46, 1653, 10.1016/S0967-0637(99)00034-5 Murphy, 2001, Phytoplankton distribution around New Zealand derived from SeaWiFS remotely-sensed ocean colour data, N. Z. J. Mar. Freshw. Res., 35, 343, 10.1080/00288330.2001.9517005 Naidu, 1999, Quaternary carbonate record from the equatorial Indian Ocean and its relationship with productivity changes, Mar. Geol., 161, 49, 10.1016/S0025-3227(99)00055-9 Naik, 2010, Evaluation of the CaCO3 dissolution proxies in sediment cores from above the lysocline, Quat. Int., 213, 69, 10.1016/j.quaint.2008.11.009 Oppo, 2012, Deep Atlantic circulation during the Last Glacial Maximum and Deglaciation, Nat. Educ. Knowl., 3, 1 Ridgwell, 2005, The role of the global carbonate cycle in the regulation and evolution of the Earth system, Earth Planet. Sci. Lett., 234, 299, 10.1016/j.epsl.2005.03.006 Russon, 2009, Middle–late Pleistocene deep water circulation in the southwest subtropical Pacific, Paleoceanography, 24, 10.1029/2009PA001755 Schaefer, 2005, Planktonic foraminiferal and sea surface temperature record during the last 1Myr across the Subtropical Front, Southwest Pacific, Mar. Micropaleontol., 54, 191, 10.1016/j.marmicro.2004.12.001 Schiebel, 2007, Planktic foraminiferal dissolution in the twilight zone, Deep-Sea Res. I Oceanogr. Res. Pap., 54, 676 Schlitzer Sexton, 2012, Onset of “Pacific-style” deep-sea sedimentary carbonate cycles at the mid-Pleistocene transition, Earth Planet. Sci. Lett., 321–322, 82 Venuti, 2007, Magnetic proxy for the deep (Pacific) western boundary current variability across the mid-Pleistocene climate transition, Earth Planet. Sci. Lett., 259, 107, 10.1016/j.epsl.2007.04.032 Vidal, 1997, Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events, Earth Planet. Sci. Lett., 146, 13, 10.1016/S0012-821X(96)00192-6 Wall-Palmer, 2011, Explosive volcanism as cause for mass mortality of pteropods, Mar. Geol., 282, 231, 10.1016/j.margeo.2011.03.001 Wilson, 1995, An exceptionally widespread ignimbrite with implications for pyroclastic flow emplacement, Nature, 378, 605, 10.1038/378605a0 Zachos, 2001, Trends, rhythms, and aberrations in global climate 65Ma to present, Science, 292, 686, 10.1126/science.1059412