Modelling of the Hypothalamic-Pituitary-Adrenal Axis Perturbations by Externally Induced Cholesterol Pulses of Finite Duration and with Asymmetrically Distributed Concentration Profile

Pleiades Publishing Ltd - Tập 91 - Trang 2600-2607 - 2018
A. Stanojević1, V. M. Marković1, Ž. Čupić2, V. Vukojević3, L. Kolar-Anić1,2
1Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
2Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, University of Belgrade, Belgrade, Serbia
3Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden

Tóm tắt

A model was developed that can be used to study the effect of gradual cholesterol intake by food on the HPA axis dynamics. Namely, well defined oscillatory dynamics of vital neuroendocrine hypothalamic-pituitary-adrenal (HPA) axis has proven to be necessary for maintaining regular basal physiology and formulating appropriate stress response to various types of perturbations. Cholesterol, as a precursor of all steroid HPA axis hormones, can alter the dynamics of HPA axis. To analyse its particular influence on the HPA axis dynamics we used stoichiometric model of HPA axis activity, and simulate cholesterol perturbations in the form of finite duration pulses, with asymmetrically distributed concentration profile. Our numerical simulations showed that there is a complex, nonlinear dependence between the HPA axis responsiveness and different forms of applied cholesterol concentration pulses, indicating the significance of kinetic modelling, and dynamical systems theory for the understanding of large-scale self-regulatory, and homeostatic processes within this neuroendocrine system.

Tài liệu tham khảo

W. Miller and G. Chrousos, in Endocrinology and Metabolism, Ed. by P. Felig and L. Frohman (McGraw–Hill, New York, 2001). S. L. Lightman, R. J. Windle, X.-M. Ma, M. S. Harbuz, N. M. Shanks, M. D. Julian, S. A. Wood, Y. M. Kershaw, and C. D. Ingram, Arch. Physiol. Biochem. 110, 90 (2002). S. M. Smith and W. W. Vale, Dialogues Clin. Neurosci. 8, 383 (2006). C. Kellendonk, P. Gass, O. Kretz, G. Schütz, and F. Tronche, Brain Res. Bull. 57, 73 (2002). S. Makino, K. Hashimoto, and P. W. Gold, Pharmacol. Biochem. Behav. 73, 147 (2002). J. Schulkin, P. W. Gold, and B. S. McEwen, Psychoneuroendocrinol. 23, 219 (1998). S. L. Lightman and B. L. Conway-Campbell, Nat. Rev. Neurosci. 11, 710 (2010). L. Djoussé and J. M. Gaziano, Curr. Atheroscler. Rep. 11, 418 (2009). R. Clarke, C. Frost, R. Collins, P. Appleby, and R. Peto, Brit. Med. J. 314, 112 (1997). W. H. Howell, D. J. McNamara, M. A. Tosca, B. T. Smith, and J. A. Gaines, Am. J. Clin. Nutr. 65, 1747 (1997). D. J. McNamara, J. Am. Coll. Nutr. 19, 540S (2000). R. V Seimon, N. Hostland, S. L. Silveira, A. A. Gibson, and A. Sainsbury, Horm. Mol. Biol. Clin. Investig. 15, 71 (2013). P. A. S. Alphonse and P. J. H. Jones, Lipids 51, 519 (2016). V. M. Marković, Ž. Čupić, S. Macešic, A. Stanojević, V. Vukojević, and L. Kolar-Anić, Math. Med. Biol. 33, 1 (2016). S. Jelić, Ž. Čupić, and Lj. Kolar-Anić, Math. Biosci. 197, 173 (2005). H. S. Seo and M. H. Choi, J. Steroid Biochem. Mol. Biol. 153, 72 (2015). M. Orth and S. Bellosta, Cholesterol 2012 (2012). C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice–Hall, Englewood Cliffs, NJ, 1971). A. E. Morgan, K. M. Mooney, S. J. Wilkinson, N. A. Pickles, and M. T. McAuley, Ageing Res. Rev. 27, 108 (2016). V. M. Marković, Ž. Čupić, V. Vukojević, and Lj. Kolar-Anić, Endocr. J. 58, 889 (2011). J. T. Davies, S. F. Delfino, C. E. Feinberg, M. F. Johnson, V. L. Nappi, J. T. Olinger, A. P. Schwab, and H. I. Swanson, Lipid Insights 9, 13 (2016).