MicroRNAs: Target Recognition and Regulatory Functions

Cell - Tập 136 - Trang 215-233 - 2009
David P. Bartel1,2,3
1Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
3Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA

Tài liệu tham khảo

Abbott, 2005, The let-7 microRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans, Dev. Cell, 9, 403, 10.1016/j.devcel.2005.07.009 Abelson, 2005, Sequence variants in SLITRK1 are associated with Tourette's syndrome, Science, 310, 317, 10.1126/science.1116502 Abrahante, 2003, The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs, Dev. Cell, 4, 625, 10.1016/S1534-5807(03)00127-8 Ambros, 2003, MicroRNAs and other tiny endogenous RNAs in C. elegans, Curr. Biol., 13, 807, 10.1016/S0960-9822(03)00287-2 Ameres, 2007, Molecular basis for target RNA recognition and cleavage by human RISC, Cell, 130, 101, 10.1016/j.cell.2007.04.037 Aravin, 2007, The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race, Science, 318, 761, 10.1126/science.1146484 Baek, 2008, The impact of microRNAs on protein output, Nature, 455, 64, 10.1038/nature07242 Bagga, 2005, Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation, Cell, 122, 553, 10.1016/j.cell.2005.07.031 Bartel, 2004, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116, 281, 10.1016/S0092-8674(04)00045-5 Bartel, 2004, Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs, Nat. Rev. Genet., 5, 396, 10.1038/nrg1328 Beitzinger, 2007, Identification of human microRNA targets from isolated argonaute protein complexes, RNA Biol., 4, 76, 10.4161/rna.4.2.4640 Betel, 2008, The microRNA.org resource: targets and expression, Nucleic Acids Res., 36, D149, 10.1093/nar/gkm995 Bhattacharyya, 2006, Relief of microRNA-mediated translational repression in human cells subjected to stress, Cell, 125, 1111, 10.1016/j.cell.2006.04.031 Brennecke, 2005, Principles of microRNA-target recognition, PLoS Biol., 3, e85, 10.1371/journal.pbio.0030085 Choi, 2007, Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430, Science, 318, 271, 10.1126/science.1147535 Clop, 2006, A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep, Nat. Genet., 38, 813, 10.1038/ng1810 Cohen, 2006, Denoising feedback loops by thresholding–a new role for microRNAs, Genes Dev., 20, 2769, 10.1101/gad.1484606 Davis, 2005, RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus, Curr. Biol., 15, 743, 10.1016/j.cub.2005.02.060 Didiano, 2008, Molecular architecture of a miRNA-regulated 3′ UTR, RNA, 14, 1297, 10.1261/rna.1082708 Doench, 2004, Specificity of microRNA target selection in translational repression, Genes Dev., 18, 504, 10.1101/gad.1184404 Doench, 2003, siRNAs can function as miRNAs, Genes Dev., 17, 438, 10.1101/gad.1064703 Dorsett, 2008, MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation, Immunity, 28, 630, 10.1016/j.immuni.2008.04.002 Easow, 2007, Isolation of microRNA targets by miRNP immunopurification, RNA, 13, 1198, 10.1261/rna.563707 Enright, 2003, MicroRNA targets in Drosophila, Genome Biol., 5, R1, 10.1186/gb-2003-5-1-r1 Farh, 2005, The widespread impact of mammalian microRNAs on mRNA repression and evolution, Science, 310, 1817, 10.1126/science.1121158 Filipowicz, 2008, Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?, Nat. Rev. Genet., 9, 102, 10.1038/nrg2290 Friedman, 2008, Most mammalian mRNAs are conserved targets of microRNAs, Genome Res. Gaidatzis, 2007, Inference of miRNA targets using evolutionary conservation and pathway analysis, BMC Bioinformatics, 8, 69, 10.1186/1471-2105-8-69 Giraldez, 2006, Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs, Science, 312, 75, 10.1126/science.1122689 Griffiths-Jones, 2008, miRBase: tools for microRNA genomics, Nucleic Acids Res., 36, D154, 10.1093/nar/gkm952 Grimson, 2007, MicroRNA targeting specificity in mammals: determinants beyond seed pairing, Mol. Cell, 27, 91, 10.1016/j.molcel.2007.06.017 Grishok, 2001, Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing, Cell, 106, 23, 10.1016/S0092-8674(01)00431-7 Grun, 2005, microRNA target predictions across seven Drosophila species and comparison to mammalian targets, PLoS Comput. Biol., 1, e13, 10.1371/journal.pcbi.0010013 Haley, 2004, Kinetic analysis of the RNAi enzyme complex, Nat. Struct. Mol. Biol., 11, 599, 10.1038/nsmb780 Hammell, 2008, mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts, Nat. Methods, 9, 813, 10.1038/nmeth.1247 He, 2005, A microRNA polycistron as a potential human oncogene, Nature, 435, 828, 10.1038/nature03552 Hutvagner, 2002, A microRNA in a multiple-turnover RNAi enzyme complex, Science, 297, 2056, 10.1126/science.1073827 John, 2004, Human microRNA targets, PLoS Biol., 2, e363, 10.1371/journal.pbio.0020363 Johnston, 2003, A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans, Nature, 426, 845, 10.1038/nature02255 Johnston, 2005, MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision, Proc. Natl. Acad. Sci. USA, 102, 12449, 10.1073/pnas.0505530102 Jones-Rhoades, 2006, MicroRNAs and their regulatory roles in plants, Annu. Rev. Plant Biol., 57, 19, 10.1146/annurev.arplant.57.032905.105218 Karginov, 2007, A biochemical approach to identifying microRNA targets, Proc. Natl. Acad. Sci. USA, 104, 19291, 10.1073/pnas.0709971104 Karolchik, 2008, The UCSC Genome Browser Database: 2008 update, Nucleic Acids Res., 36, D773, 10.1093/nar/gkm966 Karres, 2007, The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila, Cell, 131, 136, 10.1016/j.cell.2007.09.020 Kedde, 2007, RNA-binding protein Dnd1 inhibits microRNA access to target mRNA, Cell, 131, 1273, 10.1016/j.cell.2007.11.034 Kertesz, 2007, The role of site accessibility in microRNA target recognition, Nat. Genet., 39, 1278, 10.1038/ng2135 Kheradpour, 2007, Reliable prediction of regulator targets using 12 Drosophila genomes, Genome Res., 17, 1919, 10.1101/gr.7090407 Kiriakidou, 2004, A combined computational-experimental approach predicts human microRNA targets, Genes Dev., 18, 1165, 10.1101/gad.1184704 Kloosterman, 2004, Substrate requirements for let-7 function in the developing zebrafish embryo, Nucleic Acids Res., 32, 6284, 10.1093/nar/gkh968 Kosman, 2004, Multiplex detection of RNA expression in Drosophila embryos, Science, 305, 846, 10.1126/science.1099247 Krek, 2005, Combinatorial microRNA target predictions, Nat. Genet., 37, 495, 10.1038/ng1536 Krutzfeldt, 2005, Silencing of microRNAs in vivo with ‘antagomirs’, Nature, 438, 685, 10.1038/nature04303 Lagos-Quintana, 2001, Identification of novel genes coding for small expressed RNAs, Science, 294, 853, 10.1126/science.1064921 Lai, 2002, Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation, Nat. Genet., 30, 363, 10.1038/ng865 Lai, 1997, The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression, Development, 124, 4847, 10.1242/dev.124.23.4847 Lai, 1998, The K box, a conserved 3′ UTR sequence motif, negatively regulates accumulation of Enhancer of split Complex transcripts, Development, 125, 4077, 10.1242/dev.125.20.4077 Lai, 2005, Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs, Genes Dev., 19, 1067, 10.1101/gad.1291905 Lall, 2006, A genome-wide map of conserved microRNA targets in C. elegans, Curr. Biol., 16, 460, 10.1016/j.cub.2006.01.050 Landgraf, 2007, A mammalian microRNA expression atlas based on small RNA library sequencing, Cell, 129, 1401, 10.1016/j.cell.2007.04.040 Lau, 2001, An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans, Science, 294, 858, 10.1126/science.1065062 Lee, 2001, An extensive class of small RNAs in Caenorhabditis elegans, Science, 294, 862, 10.1126/science.1065329 Lee, 1993, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, 843, 10.1016/0092-8674(93)90529-Y Lee, 2003, The nuclear RNase III Drosha initiates microRNA processing, Nature, 425, 415, 10.1038/nature01957 Lewis, 2003, Prediction of mammalian microRNA targets, Cell, 115, 787, 10.1016/S0092-8674(03)01018-3 Lewis, 2005, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell, 120, 15, 10.1016/j.cell.2004.12.035 Li, 2005, A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye, Cell, 123, 1267, 10.1016/j.cell.2005.10.040 Li, 2006, MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila, Genes Dev., 20, 2793, 10.1101/gad.1466306 Lim, 2003, The microRNAs of Caenorhabditis elegans, Genes Dev., 17, 991, 10.1101/gad.1074403 Lim, 2005, Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs, Nature, 433, 769, 10.1038/nature03315 Long, 2007, Potent effect of target structure on microRNA function, Nat. Struct. Mol. Biol., 14, 287, 10.1038/nsmb1226 Lytle, 2007, Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR, Proc. Natl. Acad. Sci. USA, 104, 9667, 10.1073/pnas.0703820104 Ma, 2005, Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein, Nature, 434, 666, 10.1038/nature03514 Majoros, 2007, Spatial preferences of microRNA targets in 3′ untranslated regions, BMC Genomics, 8, 152, 10.1186/1471-2164-8-152 Mallory, 2004, MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region, EMBO J., 23, 3356, 10.1038/sj.emboj.7600340 Mayr, 2007, Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation, Science, 315, 1576, 10.1126/science.1137999 Miranda, 2006, A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes, Cell, 126, 1203, 10.1016/j.cell.2006.07.031 Mishima, 2006, Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430, Curr. Biol., 16, 2135, 10.1016/j.cub.2006.08.086 Miska, 2007, Most Caenorhabditis elegans microRNAs are individually not essential for development or viability, PLoS Genet., 3, e215, 10.1371/journal.pgen.0030215 Moss, 1997, The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA, Cell, 88, 637, 10.1016/S0092-8674(00)81906-6 Mourelatos, 2002, miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs, Genes Dev., 16, 720, 10.1101/gad.974702 Nielsen, 2007, Determinants of targeting by endogenous and exogenous microRNAs and siRNAs, RNA, 13, 1894, 10.1261/rna.768207 Parker, 2005, Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex, Nature, 434, 663, 10.1038/nature03462 Pasquinelli, 2000, Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA, Nature, 408, 86, 10.1038/35040556 Poy, 2004, A pancreatic islet-specific microRNA regulates insulin secretion, Nature, 432, 226, 10.1038/nature03076 Reinhart, 2002, Small RNAs correspond to centromere heterochromatic repeats, Science, 297, 1831, 10.1126/science.1077183 Reinhart, 2000, The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature, 403, 901, 10.1038/35002607 Rhoades, 2002, Prediction of plant microRNA targets, Cell, 110, 513, 10.1016/S0092-8674(02)00863-2 Robins, 2005, Incorporating structure to predict microRNA targets, Proc. Natl. Acad. Sci. USA, 102, 4006, 10.1073/pnas.0500775102 Rodriguez, 2007, Requirement of bic/microRNA-155 for normal immune function, Science, 316, 608, 10.1126/science.1139253 Ruby, 2006, Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans, Cell, 127, 1193, 10.1016/j.cell.2006.10.040 Ruby, 2007, Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs, Genome Res., 17, 1850, 10.1101/gr.6597907 Saetrom, 2007, Distance constraints between microRNA target sites dictate efficacy and cooperativity, Nucleic Acids Res., 35, 2333, 10.1093/nar/gkm133 Sandberg, 2008, Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites, Science, 320, 1643, 10.1126/science.1155390 Selbach, 2008, Widespread changes in protein synthesis induced by microRNAs, Nature, 455, 58, 10.1038/nature07228 Song, 2004, Crystal structure of Argonaute and its implications for RISC slicer activity, Science, 305, 1434, 10.1126/science.1102514 Sood, 2006, Cell-type-specific signatures of microRNAs on target mRNA expression, Proc. Natl. Acad. Sci. USA, 103, 2746, 10.1073/pnas.0511045103 Stark, 2003, Identification of Drosophila microRNA targets, PLoS Biol., 1, E60, 10.1371/journal.pbio.0000060 Stark, 2005, Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution, Cell, 123, 1133, 10.1016/j.cell.2005.11.023 Stark, 2007, Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures, Nature, 450, 219, 10.1038/nature06340 Teng, 2008, MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase, Immunity, 28, 621, 10.1016/j.immuni.2008.03.015 Vasudevan, 2007, Switching from repression to activation: microRNAs can up-regulate translation, Science, 318, 1931, 10.1126/science.1149460 Vasudevan, 2008, Cell-cycle control of microRNA-mediated translation regulation, Cell Cycle, 7, 1545, 10.4161/cc.7.11.6018 Vella, 2004, The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR, Genes Dev., 18, 132, 10.1101/gad.1165404 Wienholds, 2005, MicroRNA expression in zebrafish embryonic development, Science, 309, 310, 10.1126/science.1114519 Wightman, 1991, Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development, Genes Dev., 5, 1813, 10.1101/gad.5.10.1813 Wightman, 1993, Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans, Cell, 75, 855, 10.1016/0092-8674(93)90530-4 Wu, 2005, Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells, Mol. Cell. Biol., 25, 9198, 10.1128/MCB.25.21.9198-9208.2005 Xiao, 2007, MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb, Cell, 131, 146, 10.1016/j.cell.2007.07.021 Xie, 2005, Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals, Nature, 434, 338, 10.1038/nature03441 Yekta, 2004, MicroRNA-directed cleavage of HOXB8 mRNA, Science, 304, 594, 10.1126/science.1097434 Yoo, 2005, LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans, Science, 310, 1330, 10.1126/science.1119481 Zhao, 2005, Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis, Nature, 436, 214, 10.1038/nature03817