Best-possible bounds on sets of bivariate distribution functions

Journal of Multivariate Analysis - Tập 90 - Trang 348-358 - 2004
Roger B Nelsen1, José Juan Quesada Molina2, José Antonio Rodrı́guez Lallena3, Manuel Úbeda Flores3
1Department of Mathematical Sciences, Lewis & Clark College, 0615 SW Palatine Hill Rd., Portland, OR 97219, USA
2Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada, Spain
3Departamento de Estadı́stica y Matemática Aplicada, Universidad de Almerı́a, 04120, Almerı́a, Spain

Tài liệu tham khảo

Alsina, 1993, On the characterization of a class of binary operations on distribution functions, Statist. Probab. Lett., 17, 85, 10.1016/0167-7152(93)90001-Y Fréchet, 1951, Sur les tableaux de corrélation dont les marges sont données, Ann. Univ. Lyon Sect. A, 9, 53 Fredricks, 1997, Copulas constructed from diagonal sections, 129 Fredricks, 1997, Diagonal copulas, 121 Fredricks, 2002, The Bertino family of copulas, 81 Genest, 1999, A characterization of quasi-copulas, J. Multivariate Anal., 69, 193, 10.1006/jmva.1998.1809 W. Hoeffding, Masstabinvariante Korrelationstheorie, Schriften des Matematischen Instituts und des Instituts für Angewandte Mathematik der Universität Berlin 5, Heft 3 (1940), 179-233 [Reprinted as Scale-invariant correlation theory in: N.I. Fisher, P.K. Sen (Eds.), The Collected Works of Wassily Hoeffding, Springer, New York, 1994, pp. 57–107]. Nelsen, 1999 Nelsen, 1996, Derivability of some operations on distribution functions, Vol. 28, 233 Nelsen, 2001, Bounds on bivariate distribution functions with given margins and measures of association, Comm. Statist.-Theory Methods, 30, 1155, 10.1081/STA-100104355 Sklar, 1959, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris, 8, 229 M. Úbeda Flores, Cópulas y cuasicópulas: interrelaciones y nuevas propiedades, Aplicaciones, Ph.D. Dissertation, Servicio de Publicaciones de la Universidad de Almerı́a, Spain, 2001.