Best-possible bounds on sets of bivariate distribution functions
Tài liệu tham khảo
Alsina, 1993, On the characterization of a class of binary operations on distribution functions, Statist. Probab. Lett., 17, 85, 10.1016/0167-7152(93)90001-Y
Fréchet, 1951, Sur les tableaux de corrélation dont les marges sont données, Ann. Univ. Lyon Sect. A, 9, 53
Fredricks, 1997, Copulas constructed from diagonal sections, 129
Fredricks, 1997, Diagonal copulas, 121
Fredricks, 2002, The Bertino family of copulas, 81
Genest, 1999, A characterization of quasi-copulas, J. Multivariate Anal., 69, 193, 10.1006/jmva.1998.1809
W. Hoeffding, Masstabinvariante Korrelationstheorie, Schriften des Matematischen Instituts und des Instituts für Angewandte Mathematik der Universität Berlin 5, Heft 3 (1940), 179-233 [Reprinted as Scale-invariant correlation theory in: N.I. Fisher, P.K. Sen (Eds.), The Collected Works of Wassily Hoeffding, Springer, New York, 1994, pp. 57–107].
Nelsen, 1999
Nelsen, 1996, Derivability of some operations on distribution functions, Vol. 28, 233
Nelsen, 2001, Bounds on bivariate distribution functions with given margins and measures of association, Comm. Statist.-Theory Methods, 30, 1155, 10.1081/STA-100104355
Sklar, 1959, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris, 8, 229
M. Úbeda Flores, Cópulas y cuasicópulas: interrelaciones y nuevas propiedades, Aplicaciones, Ph.D. Dissertation, Servicio de Publicaciones de la Universidad de Almerı́a, Spain, 2001.