Isogeometric collocation methods for the Reissner–Mindlin plate problem

J. Kiendl1, F. Auricchio1,2, L. Beirão da Veiga3, C. Lovadina4,2, A. Reali1,5
1Department of Civil Engineering and Architecture, University of Pavia, Italy
2IMATI-CNR, Pavia, Italy
3Mathematics Department “F. Enriques”, University of Milan, Italy
4Mathematics Department, University of Pavia, Italy
5IMATI CNR, Pavia, Italy

Tài liệu tham khảo

Cottrell, 2009 Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008 Bazilevs, 2006, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., 16, 1, 10.1142/S0218202506001455 Beirão da Veiga, 2011, Some estimates for h-p-k-refinement in isogeometric analysis, Numer. Math., 118, 271, 10.1007/s00211-010-0338-z Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027 Hughes, 2008, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 4104, 10.1016/j.cma.2008.04.006 Morganti, 2014 Auricchio, 2007, A fully “locking-free” isogeometric approach for plane linear elasticity problems: a stream function formulation, Comput. Methods Appl. Mech. Engrg., 197, 160, 10.1016/j.cma.2007.07.005 Gomez, 2008, Isogeometric analysis of the Cahn–Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 4333, 10.1016/j.cma.2008.05.003 Kiendl, 2009, Isogeometric shell analysis with Kirchhoff–Love elements, Comput. Methods Appl. Mech. Engrg., 198, 3902, 10.1016/j.cma.2009.08.013 Reali, 2006, An isogeometric analysis approach for the study of structural vibrations, Comput. Methods Appl. Mech. Engrg., 1–30, 15 Shojaee, 2012, Free vibration analysis of thin plates by using a NURBS-based isogeometric approach, Finite Elem. Anal. Des., 61, 23, 10.1016/j.finel.2012.06.005 Auricchio, 2012, A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 249–252, 15, 10.1016/j.cma.2012.04.014 Hughes, 2010, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 301, 10.1016/j.cma.2008.12.004 Schillinger, 2014, Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 277, 1, 10.1016/j.cma.2014.04.008 Auricchio, 2010, Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 2075, 10.1142/S0218202510004878 Auricchio, 2012, Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249–252, 2, 10.1016/j.cma.2012.03.026 Schillinger, 2013, Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg., 267, 170, 10.1016/j.cma.2013.07.017 Gomez, 2014, Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models, J. Comput. Phys., 262, 153, 10.1016/j.jcp.2013.12.044 De Lorenzis, 2015, Isogeometric collocation: Neumann boundary conditions and contact, Comput. Methods Appl. Mech. Engrg., 284, 21, 10.1016/j.cma.2014.06.037 Reali, 2014, An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates, Comput. Methods Appl. Mech. Engrg. Beirão da Veiga, 2012, Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 241–244, 38, 10.1016/j.cma.2012.05.020 Auricchio, 2013, Locking-free isogeometric collocation methods for spatial Timoshenko rods, Comput. Methods Appl. Mech. Engrg., 263, 113, 10.1016/j.cma.2013.03.009 Echter, 2013, A hierarchic family of isogeometric shell finite elements, Comput. Methods Appl. Mech. Engrg., 254, 170, 10.1016/j.cma.2012.10.018 Long, 2012, Shear-flexible subdivision shells, Internat. J. Numer. Methods Engrg., 90, 1549, 10.1002/nme.3368 Bathe, 1996 Boffi, 2013 Hughes, 2000 Hughes, 1981, Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element, J. Appl. Mech., 48, 587, 10.1115/1.3157679 Buffa, 2011, Isogeometric discrete differential forms in three dimensions, SIAM J. Numer. Anal., 49, 818, 10.1137/100786708 Buffa, 2010, Isogeometric analysis in electromagnetics: B-splines approximation, Comput. Methods Appl. Mech. Engrg., 199, 1143, 10.1016/j.cma.2009.12.002 Beirão da Veiga, 2012, An isogeometric method for the Reissner–Mindlin plate bending problem, Comput. Methods Appl. Mech. Engrg., 209–212, 45, 10.1016/j.cma.2011.10.009 Arnold, 1996, Asymptotic analysis of the boundary layer for the Reissner–Mindlin plate model, SIAM J. Math. Anal., 27, 486, 10.1137/S0036141093245276 Chinosi, 1995, Numerical analysis of some mixed finite element methods for Reissner–Mindlin plates, Comput. Mech., 16, 36, 10.1007/BF00369883