Isogeometric collocation methods for the Reissner–Mindlin plate problem
Tài liệu tham khảo
Cottrell, 2009
Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008
Bazilevs, 2006, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., 16, 1, 10.1142/S0218202506001455
Beirão da Veiga, 2011, Some estimates for h-p-k-refinement in isogeometric analysis, Numer. Math., 118, 271, 10.1007/s00211-010-0338-z
Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027
Hughes, 2008, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 4104, 10.1016/j.cma.2008.04.006
Morganti, 2014
Auricchio, 2007, A fully “locking-free” isogeometric approach for plane linear elasticity problems: a stream function formulation, Comput. Methods Appl. Mech. Engrg., 197, 160, 10.1016/j.cma.2007.07.005
Gomez, 2008, Isogeometric analysis of the Cahn–Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 4333, 10.1016/j.cma.2008.05.003
Kiendl, 2009, Isogeometric shell analysis with Kirchhoff–Love elements, Comput. Methods Appl. Mech. Engrg., 198, 3902, 10.1016/j.cma.2009.08.013
Reali, 2006, An isogeometric analysis approach for the study of structural vibrations, Comput. Methods Appl. Mech. Engrg., 1–30, 15
Shojaee, 2012, Free vibration analysis of thin plates by using a NURBS-based isogeometric approach, Finite Elem. Anal. Des., 61, 23, 10.1016/j.finel.2012.06.005
Auricchio, 2012, A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 249–252, 15, 10.1016/j.cma.2012.04.014
Hughes, 2010, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 301, 10.1016/j.cma.2008.12.004
Schillinger, 2014, Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 277, 1, 10.1016/j.cma.2014.04.008
Auricchio, 2010, Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 2075, 10.1142/S0218202510004878
Auricchio, 2012, Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249–252, 2, 10.1016/j.cma.2012.03.026
Schillinger, 2013, Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg., 267, 170, 10.1016/j.cma.2013.07.017
Gomez, 2014, Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models, J. Comput. Phys., 262, 153, 10.1016/j.jcp.2013.12.044
De Lorenzis, 2015, Isogeometric collocation: Neumann boundary conditions and contact, Comput. Methods Appl. Mech. Engrg., 284, 21, 10.1016/j.cma.2014.06.037
Reali, 2014, An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates, Comput. Methods Appl. Mech. Engrg.
Beirão da Veiga, 2012, Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 241–244, 38, 10.1016/j.cma.2012.05.020
Auricchio, 2013, Locking-free isogeometric collocation methods for spatial Timoshenko rods, Comput. Methods Appl. Mech. Engrg., 263, 113, 10.1016/j.cma.2013.03.009
Echter, 2013, A hierarchic family of isogeometric shell finite elements, Comput. Methods Appl. Mech. Engrg., 254, 170, 10.1016/j.cma.2012.10.018
Long, 2012, Shear-flexible subdivision shells, Internat. J. Numer. Methods Engrg., 90, 1549, 10.1002/nme.3368
Bathe, 1996
Boffi, 2013
Hughes, 2000
Hughes, 1981, Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element, J. Appl. Mech., 48, 587, 10.1115/1.3157679
Buffa, 2011, Isogeometric discrete differential forms in three dimensions, SIAM J. Numer. Anal., 49, 818, 10.1137/100786708
Buffa, 2010, Isogeometric analysis in electromagnetics: B-splines approximation, Comput. Methods Appl. Mech. Engrg., 199, 1143, 10.1016/j.cma.2009.12.002
Beirão da Veiga, 2012, An isogeometric method for the Reissner–Mindlin plate bending problem, Comput. Methods Appl. Mech. Engrg., 209–212, 45, 10.1016/j.cma.2011.10.009
Arnold, 1996, Asymptotic analysis of the boundary layer for the Reissner–Mindlin plate model, SIAM J. Math. Anal., 27, 486, 10.1137/S0036141093245276
Chinosi, 1995, Numerical analysis of some mixed finite element methods for Reissner–Mindlin plates, Comput. Mech., 16, 36, 10.1007/BF00369883