Role of Yb in enhancing the heat resistance of cast Mg-Sm-Zn alloy
Tài liệu tham khảo
Yang, 2021, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloys, 9, 705, 10.1016/j.jma.2021.04.001
Mordike, 2001, Development of highly creep resistant magnesium alloys, J. Mater. Process. Technol., 117, 391, 10.1016/S0924-0136(01)00793-2
Zhu, 2010, The relationship between microstructure and creep resistance in die-cast magnesium-rare earth alloys, Scripta Mater, 63, 698, 10.1016/j.scriptamat.2010.02.005
Hono, 2010, Towards the development of heat-treatable high-strength wrought Mg alloys, Scripta Mater., 63, 710, 10.1016/j.scriptamat.2010.01.038
Xia, 2016, Precipitation evolution and hardening in Mg-Sm-Zn-Zr alloys, Acta Mater, 111, 335, 10.1016/j.actamat.2016.03.068
Zhang, 2019, A high-strength low-rare-earth-alloyed magnesium alloy via traditional hot-extrusion, J. Alloys Compd., 810, 151967, 10.1016/j.jallcom.2019.151967
Zhang, 2019, Improvement on both strength and ductility of Mg-Sm-Zn-Zr casting alloy via Yb addition, J. Alloys Compd., 805, 811, 10.1016/j.jallcom.2019.07.094
Zheng, 2010, Effect of Sm on the microstructure, mechanical properties and creep behavior of Mg–0.5Zn–0.4Zr based alloys, Mater. Sci. Eng., 527, 1677, 10.1016/j.msea.2009.10.067
Che, 2017, The effect of Gd and Zn additions on microstructures and mechanical properties of Mg-4Sm-3Nd-Zr alloy, J. Alloys Compd., 706, 526, 10.1016/j.jallcom.2017.02.269
Yuan, 2014, Effects of heat treatment on microstructure and mechanical properties of Mg-2.6Sm-1.3Gd-0.6Zn-0.5Zr alloy, Mater. Sci. Technol., 30, 261, 10.1179/1743284713Y.0000000323
Li, 2007, Effects of heat treatments on Microstructure and mechanical properties of Mg-4Y-4Sm-0.5Zr alloy, Mater. Sci. Eng., 448, 165, 10.1016/j.msea.2006.10.016
Rokhlin, 2003
Zhang, 2017, Excellent ductility and strong work hardening effect of as-cast Mg-Zn-Zr-Yb alloy at room temperature, J. Alloys Compd., 728, 404, 10.1016/j.jallcom.2017.09.016
Mo, 2019, Understanding solid solution strengthening at elevated temperatures in a creep-resistant Mg–Gd–Ca alloy, Acta Mater, 181, 185, 10.1016/j.actamat.2019.09.058
Zhang, 2017, Effects of minor Sr addition on the microstructure, mechanical properties and creep behavior of high pressure die casting AZ91-0.5RE based alloy, Mater. Sci. Eng., A, 693, 51, 10.1016/j.msea.2017.03.055
Homma, 2011, Unexpected influence of Mn addition on the creep properties of a cast Mg-2Al-2Ca (mass%) alloy, Acta Mater, 59, 7662, 10.1016/j.actamat.2011.08.049
Homma, 2010, Improvement in creep property of a cast Mg-6Al-3Ca alloy by Mn addition, Scripta Mater, 63, 1173, 10.1016/j.scriptamat.2010.08.033
Zhang, 2021, Compressive creep behavior of extruded Mg-4Sm-2Yb-0.6Zn-0.4Zr alloy, Mater. Sci. Eng., A, 809, 140929, 10.1016/j.msea.2021.140929
Li, 2010, Transmission electron microscopy study of stacking faults and their interaction with pyramidal dislocations in deformed Mg, Acta Mater, 58, 173, 10.1016/j.actamat.2009.08.066
Jian, 2013, Ultrastrong Mg alloy via nano-spaced stacking faults, Mater. Res. Lett., 1, 61, 10.1080/21663831.2013.765927
Nie, 2008, Solute segregation and precipitation in a creep-resistant Mg-Gd-Zn alloy, Acta Mater, 56, 6061, 10.1016/j.actamat.2008.08.025
Nie, 2005, Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn, Scripta Mater, 53, 1049, 10.1016/j.scriptamat.2005.07.004
Honma, 2007, Effect of Zn additions on the age-hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys, Acta Mater, 55, 4137, 10.1016/j.actamat.2007.02.036
Abaspour, 2016, High temperature strength and stress relaxation behavior of dilute binary Mg alloys, Metall. Mater. Trans., 47, 1313, 10.1007/s11661-015-3292-7
Abaspour, 2016, Atomic size and local order effects on the high temperature strength of binary Mg alloys, Mater. Sci. Eng., A, 673, 114, 10.1016/j.msea.2016.07.019
Amberger, 2012, On the importance of a connected hardphase skeleton for the creep resistance of Mg alloys, Acta Mater, 60, 2277, 10.1016/j.actamat.2012.01.017
Shang, 2014, Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: a first-principles study of shear deformation, Acta Mater, 67, 168, 10.1016/j.actamat.2013.12.019
Zhu, 2011, Dislocation-twin interactions in nanocrystalline fcc metals, Acta Mater, 59, 812, 10.1016/j.actamat.2010.10.028
Zhang, 2019, Development of extruded Mg-6Er-3Y-1.5Zn-0.4Mn (wt.%) alloy with high strength at elevated temperature, J. Mater. Sci. Technol., 35, 2365, 10.1016/j.jmst.2019.05.053
Xu, 2012, Effects of different cooling rates during two casting processes on the microstructures and mechanical properties of extruded Mg–Al–Ca–Mn alloy, Mater. Sci. Eng., A, 542, 71, 10.1016/j.msea.2012.02.034
Li, 2018, Different precipitation hardening behaviors of extruded Mg-6Gd-1Ca alloy during artifical aging and creep processes, Mater. Sci. Eng., A, 715, 186, 10.1016/j.msea.2018.01.003
Hu, 2017, Effect of uniaxial creep ageing on the mechanical properties and micro precipitates of Al-Li-S4 alloy, Mater. Sci. Eng., A, 688, 272, 10.1016/j.msea.2017.01.081
Nie, 2012, Precipitation and hardening in magnesium alloys, Metall. Mater. Trans., 43A, 3891, 10.1007/s11661-012-1217-2
Zhu, 2008, Microstructural analysis of the creep resistance of die-cast Mg–4Al–2RE alloy, Scripta Mater, 58, 477, 10.1016/j.scriptamat.2007.10.041
Kottada, 2005, Low temperature compressive creep in electrodeposited nanocrystalline nickel, Scripta Mater, 53, 887, 10.1016/j.scriptamat.2005.06.035
Farag, 2008, Effect of grain size on the primary and secondary creep behavior of Sn-3 wt.% Bi alloy, J. Mater. Sci., 43, 1444, 10.1007/s10853-007-2312-4
Wu, 1995, GB sliding in the presence of GB precipitates during transient creep, Metall. Mater. Trans., 26A, 905, 10.1007/BF02649087