Heat Invariants of the Steklov Problem

The Journal of Geometric Analysis - Tập 25 - Trang 924-950 - 2013
Iosif Polterovich1, David A. Sher2
1Département de Mathématiques et de Statistique, Université de Montréal, Montreal, Canada
2Centre de Recherches Mathematiques, Université de Montréal, Montreal, Canada

Tóm tắt

We study the heat trace asymptotics associated with the Steklov eigenvalue problem on a Riemannian manifold with boundary. In particular, we describe the structure of the Steklov heat invariants and compute the first few of them explicitly in terms of the scalar and mean curvatures. This is done by applying the Seeley calculus to the Dirichlet-to-Neumann operator, whose spectrum coincides with the Steklov eigenvalues. As an application, it is proved that a three-dimensional ball is uniquely defined by its Steklov spectrum among all Euclidean domains with smooth connected boundary.

Tài liệu tham khảo

Agranovich, M.S.: Some asymptotic formulas for elliptic pseudodifferential operators. Funkc. Anal. Prilozh. 21, 53–56 (1987) Alexandrov, A.D.: Uniqueness theorem for surfaces in the large I. Vestn. Leningr. Univ. 11, 5–17 (1956) Alias, L., de Lira, J., Malacarne, J.M.: Constant higher-order mean curvature hypersurfaces in Riemannian spaces. J. Inst. Math. Jussieu 5(4), 527–562 (2006) Besse, A.: Manifolds All of Whose Geodesics are Closed. Ergeb, Math., vol. 93. Springer, New York (1978) Binoy, Santhanam, G.: Sharp upper bound and a comparison theorem for the first nonzero Steklov eigenvalue. arXiv:1208.1690 Brock, F.: An isoperimetric inequality for eigenvalues of the Stekloff problem. Z. Angew. Math. Mech. 81, 69–71 (2001) do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992) Colbois, B., El Soufi, A., Girouard, A.: Isoperimetric control of the Steklov spectrum. J. Funct. Anal. 261(5), 1384–1399 (2011) Duistermaat, H., Guillemin, V.: Spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29(1), 39–79 (1975) Edward, J.: An inverse spectral result for the Neumann operator on planar domains. J. Funct. Anal. 111, 312–322 (1993) Edward, J., Wu, S.: Determinant of the Neumann operator on smooth Jordan curves. Proc. Am. Math. Soc. 111(2), 357–363 (1991) Fraser, A., Schoen, R.: The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226, 4011–4030 (2011) Fraser, A., Schoen, R.: Eigenvalue bounds and minimal surfaces in the ball. arXiv:1209.3789 Gilkey, P.: Asymptotic Formulae in Spectral Geometry. CRC Press, Boca Raton (2004) Gilkey, P., Grubb, G.: Logarithmic terms in asymptotic expansions of heat operator traces. Commun. Partial Differ. Equ. 23(5–6), 777–792 (1998) Girouard, A., Polterovich, I.: Shape optimization for low Neumann and Steklov eigenvalues. Math. Methods Appl. Sci. 33(4), 501–516 (2010) Girouard, A., Polterovich, I.: Upper bounds for Steklov eigenvalues on surfaces. ERA-MS 19, 77–85 (2012) Gradshteyn, I.S., Ryzhik, I.M.: In: Jeffrey, A., Zwillinger, D. (eds.) Table of Integrals, Series, and Products, 7th edn. Academic Press, New York (2008) Grubb, G., Seeley, R.: Weakly parametric pseudodifferential operators and Atiyah–Patodi–Singer boundary problems. Invent. Math. 121, 481–529 (1995) Guillemin, V.: The Radon transform on Zoll surfaces. Adv. Math. 22, 85–119 (1976) Hassell, A., Zworski, M.: Resonant rigidity of S 2. J. Funct. Anal. 169, 604–609 (1999) Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser, Basel (2006) Hörmander, L.: The Analysis of Partial Differential Operators, vol. IV. Grundlehren, vol. 275. Springer, New York (1984) Jammes, P.: Prescription du spectre de Steklov dans une classe conforme. arXiv:1209.4571 Karpukhin, M., Kokarev, G., Polterovich, I.: Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces. arXiv:1209.4869 Lee, J., Uhlmann, G.: Determining isotropic real-analytic conductivities by boundary measurements. Commun. Pure Appl. Math. 42, 1097–1112 (1989) Lee, Y.: Burghelea–Friedlander–Kappeler’s gluing formula for the zeta-determinant and its applications to the adiabatic decompositions of the zeta-determinant and the analytic torsion. Trans. Am. Math. Soc. 355, 4093–4110 (2003) Polterovich, I.: Combinatorics of the heat trace on spheres. Can. J. Math. 54, 1086–1099 (2002) Seeley, R.: Complex Powers of an Elliptic Operator. In: Singular Integrals, Providence, RI. Proc. Symp. Pure Math., pp. 288–307 (1967) Tanno, S.: Eigenvalues of the Laplacian of Riemannian manifolds. Tohoku Math. J. (2) 25(3), 391–403 (1973) Taylor, M.: Partial Differential Equations II. Qualitative Studies of Linear Equations. Applied Mathematical Sciences, vol. 116. Springer, New York (1996) Viaclovsky, J.: Topics in Riemannian geometry Lecture notes. Available online at http://www.math.wisc.edu/~jeffv/courses/865_Fall_2011.pdf Weinstock, R.: Inequalities for a classical eigenvalue problem. J. Ration. Mech. Anal. 3, 343–356 (1954) Zelditch, S.: Maximally degenerate Laplacians. Ann. Inst. Fourier 46(2), 547–587 (1996)