Protection of Bovine Chondrocyte Phenotype by Heat Inactivation of Allogeneic Serum in Monolayer Expansion Cultures
Tóm tắt
Cartilage defects can be addressed with replacement strategies such as autologous chondrocyte implantation (ACI). Expansion of autologous chondrocytes in vitro is an essential step to obtain the necessary cell numbers required for ACI. A major problem with this approach is dedifferentiation of chondrocytes during expansion, resulting in cells with fibroblast-like features. These cells generate cartilage tissue with fibrotic instead of hyaline characteristics. The use of serum is a common feature in most expansion protocols and a potential factor contributing to the dedifferentiation process. The aim of this study was to assess if heat inactivation of serum used in the expansion medium might be a valid approach to generate cells with an improved phenotype and in relevant numbers. We used bovine chondrocyte expansion cultures incubated with heat inactivated allogeneic serum (HIFBS) as a model system. We here show that heat inactivation protects the differentiated phenotype of chondrocytes compared to cultures with regular serum. This is not only true for primary cultures but holds up after two passages. Moreover, using relatively low cell seeding densities, clinically relevant cell numbers can already be reached after the first passage in cultures with HIFBS. In short we here introduce a simple way to improve cell quality while generating relevant amounts of cells during monolayer expansion of bovine chondrocytes in a relative short time period. Our results could have wider implications when translated to the expansion of human chondrocytes.
Tài liệu tham khảo
Archer, C. W., J. McDowell, M. T. Bayliss, M. D. Stephens, and G. Bentley. Phenotypic modulation in sub-populations of human articular chondrocytes in vitro. J. Cell Sci. 97(Pt 2):361–371, 1990.
Ayache, S., M. C. Panelli, K. M. Byrne, S. Slezak, S. F. Leitman, F. M. Marincola, et al. Comparison of proteomic profiles of serum, plasma, and modified media supplements used for cell culture and expansion. J. Transl. Med. 4:40, 2006.
Beier, F., and R. F. Loeser. Biology and pathology of Rho GTPase, PI-3 kinase-Akt, and MAP kinase signaling pathways in chondrocytes. J. Cell. Biochem. 110:573–580, 2010.
Bhosale, A. M., and J. B. Richardson. Articular cartilage: structure, injuries and review of management. Br. Med. Bull. 87:77–95, 2008.
Bosnakovski, D., M. Mizuno, G. Kim, S. Takagi, M. Okumura, and T. Fujinaga. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol. Bioeng. 93:1152–1163, 2006.
Bowolaksono, A., R. Nishimura, T. Hojo, R. Sakumoto, T. J. Acosta, and K. Okuda. Anti-apoptotic roles of prostaglandin E2 and F2alpha in bovine luteal steroidogenic cells. Biol. Reprod. 79:310–317, 2008.
Brittberg, M., A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331:889–895, 1994.
Brittberg, M., L. Peterson, E. Sjogren-Jansson, T. Tallheden, and A. Lindahl. Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J. Bone Jt. Surg. Am. 85A(Suppl 3):109–115, 2003.
Bruinink, A., U. Tobler, M. Halg, and J. Grunert. Effects of serum and serum heat-inactivation on human bone derived osteoblast progenitor cells. J. Mater. Sci. Mater. Med. 15:497–501, 2004.
Cheng, T., N. C. Maddox, A. W. Wong, R. Rahnama, and A. C. Kuo. Comparison of gene expression patterns in articular cartilage and dedifferentiated articular chondrocytes. J. Orthop. Res. 30:234–245, 2012.
Darling, E. M., and K. A. Athanasiou. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res. 23:425–432, 2005.
Farndale, R. W., D. J. Buttle, and A. J. Barrett. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta 883:173–177, 1986.
Francioli, S. E., I. Martin, C. P. Sie, R. Hagg, R. Tommasini, C. Candrian, et al. Growth factors for clinical-scale expansion of human articular chondrocytes: relevance for automated bioreactor systems. Tissue Eng. 13:1227–1234, 2007.
Giannoni, P., A. Pagano, E. Maggi, R. Arbico, N. Randazzo, M. Grandizio, et al. Autologous chondrocyte implantation (ACI) for aged patients: development of the proper cell expansion conditions for possible therapeutic applications. Osteoarthritis Cartilage 13:589–600, 2005.
Giovannini, S., J. Diaz-Romero, T. Aigner, P. Mainil-Varlet, and D. Nesic. Population doublings and percentage of S100-positive cells as predictors of in vitro chondrogenicity of expanded human articular chondrocytes. J. Cell. Physiol. 222:411–420, 2010.
Goessler, U. R., K. Bieback, P. Bugert, R. Naim, C. Schafer, H. Sadick, et al. Human chondrocytes differentially express matrix modulators during in vitro expansion for tissue engineering. Int. J. Mol. Med. 16:509–515, 2005.
Goessler, U. R., P. Bugert, K. Bieback, A. Baisch, H. Sadick, T. Verse, et al. Expression of collagen and fiber-associated proteins in human septal cartilage during in vitro dedifferentiation. Int. J. Mol. Med. 14:1015–1022, 2004.
Homicz, M. R., B. L. Schumacher, R. L. Sah, and D. Watson. Effects of serial expansion of septal chondrocytes on tissue-engineered neocartilage composition. Otolaryngol. Head Neck Surg. 127:398–408, 2002.
Hunziker, E. B. Articular cartilage repair: problems and perspectives. Biorheology 37:163–164, 2000.
Jakob, M., O. Demarteau, D. Schafer, B. Hintermann, W. Dick, M. Heberer, et al. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J. Cell. Biochem. 81:368–377, 2001.
Johnson, W. E., S. Stephan, and S. Roberts. The influence of serum, glucose and oxygen on intervertebral disc cell growth in vitro: implications for degenerative disc disease. Arthritis Res. Ther. 10:R46, 2008.
Kim, S. J., J. W. Ju, C. D. Oh, Y. M. Yoon, W. K. Song, J. H. Kim, et al. ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J. Biol. Chem. 277:1332–1339, 2002.
Lefebvre, V., C. Peeters-Joris, and G. Vaes. Production of collagens, collagenase and collagenase inhibitor during the dedifferentiation of articular chondrocytes by serial subcultures. Biochim. Biophys. Acta 1051:266–275, 1990.
Lin, Z., J. B. Fitzgerald, J. Xu, C. Willers, D. Wood, A. J. Grodzinsky, et al. Gene expression profiles of human chondrocytes during passaged monolayer cultivation. J. Orthop. Res. 26:1230–1237, 2008.
Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408, 2001.
Malpeli, M., N. Randazzo, R. Cancedda, and B. Dozin. Serum-free growth medium sustains commitment of human articular chondrocyte through maintenance of Sox9 expression. Tissue Eng. 10:145–155, 2004.
Mandl, E. W., S. W. van der Veen, J. A. Verhaar, and G. J. van Osch. Multiplication of human chondrocytes with low seeding densities accelerates cell yield without losing redifferentiation capacity. Tissue Eng. 10:109–118, 2004.
Munirah, S., B. H. Ruszymah, O. C. Samsudin, A. H. Badrul, B. Azmi, and B. S. Aminuddin. Autologous versus pooled human serum for articular chondrocyte growth. J. Orthop. Surg. (Hong Kong) 16:220–229, 2008.
Munirah, S., O. C. Samsudin, B. S. Aminuddin, and B. H. Ruszymah. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy. Tissue Cell 42:282–292, 2010.
Narcisi, R., R. Quarto, V. Ulivi, A. Muraglia, L. Molfetta, and P. Giannoni. TGF beta-1 administration during ex-vivo expansion of human articular chondrocytes in a serum-free medium redirects the cell phenotype toward hypertrophy. J. Cell. Physiol. 227(9):3282–3290, 2011.
Nimura, A., T. Muneta, K. Otabe, H. Koga, Y. J. Ju, T. Mochizuki, et al. Analysis of human synovial and bone marrow mesenchymal stem cells in relation to heat-inactivation of autologous and fetal bovine serums. BMC Musculoskelet. Disord. 11:208, 2010.
Peterson, L., T. Minas, M. Brittberg, A. Nilsson, E. Sjogren-Jansson, and A. Lindahl. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin. Orthop. Relat. Res. 374:212–234, 2000.
Plaas, A., J. Velasco, D. J. Gorski, J. Li, A. Cole, K. Christopherson, et al. The relationship between fibrogenic TGFbeta1 signaling in the joint and cartilage degradation in post-injury osteoarthritis. Osteoarthritis Cartilage 19:1081–1090, 2011.
Pohlers, D., R. Huber, B. Ukena, and R. W. Kinne. Expression of platelet-derived growth factors C and D in the synovial membrane of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum. 54:788–794, 2006.
Radons, J., A. K. Bosserhoff, S. Grassel, W. Falk, and T. E. Schubert. p38MAPK mediates IL-1-induced down-regulation of aggrecan gene expression in human chondrocytes. Int. J. Mol. Med. 17:661–668, 2006.
Rosenzweig, D. H., M. Matmati, G. Khayat, S. Chaudhry, and B. Hinz. Quinn T. Tissue Eng Part A: Culture of primary bovine chondrocytes on a continuously expanding surface inhibits dedifferentiation, 2012.
Rosenzweig, D. H., S. Solar-Cafaggi, and T. M. Quinn. Functionalization of dynamic culture surfaces with a cartilage extracellular matrix extract enhances chondrocyte phenotype against dedifferentiation. Acta Biomater. 8:3333–3341, 2012.
Strauss, E. J., L. E. Fonseca, M. R. Shah, and T. Yorum. Management of focal cartilage defects in the knee—is ACI the answer? Bull. NYU Hosp. Jt. Dis. 69:63–72, 2011.
Tallheden, T., J. van der Lee, C. Brantsing, J. E. Mansson, E. Sjogren-Jansson, and A. Lindahl. Human serum for culture of articular chondrocytes. Cell Transplant. 14:469–479, 2005.
Yan, D., D. Chen, S. M. Cool, A. J. van Wijnen, K. Mikecz, G. Murphy, et al. Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Res. Ther. 13:R130, 2011.
Yoon, Y. M., S. J. Kim, C. D. Oh, J. W. Ju, W. K. Song, Y. J. Yoo, et al. Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J. Biol. Chem. 277:8412–8420, 2002.
Zaucke, F., R. Dinser, P. Maurer, and M. Paulsson. Cartilage oligomeric matrix protein (COMP) and collagen IX are sensitive markers for the differentiation state of articular primary chondrocytes. Biochem. J. 358:17–24, 2001.