Climate change impact assessment on mild and extreme drought events using copulas over Ankara, Turkey
Tóm tắt
Climate change, one of the major environmental challenges facing mankind, has caused intermittent droughts in many regions resulting in reduced water resources. This study investigated the impact of climate change on the characteristics (occurrence, duration, and severity) of meteorological drought across Ankara, Turkey. To this end, the observed monthly rainfall series from five meteorology stations scattered across Ankara Province as well as dynamically downscaled outputs of three global climate models that run under RCP 4.5 and RCP 8.5 scenarios was used to attain the well-known SPI series during the reference period of 1986–2018 and the future period of 2018–2050, respectively. Analyzing drought features in two time periods generally indicated the higher probability of occurrence of drought in the future period. The results showed that the duration of mild droughts may increase, and extreme droughts will occur with longer durations and larger severities. Moreover, joint return period analysis through different copula functions revealed that the return period of mild droughts will remain the same in the near future, while it declines by 12% over extreme droughts in the near future.
Tài liệu tham khảo
Adib A, Marashi SS (2019) Meteorological drought monitoring and preparation of long-term and short-term drought zoning maps using regional frequency analysis and L-moment in the Khuzestan province of Iran. Theor Appl Climatol 137(1–2):77–87. https://doi.org/10.1007/s00704-018-2572-8
Afshar MH, Yilmaz MT (2017) The added utility of nonlinear methods compared to linear methods in rescaling soil moisture products. Remote Sens Environ 196:224–237. https://doi.org/10.1016/J.RSE.2017.05.017
Afshar MH, Sorman A, Yilmaz MT (2016) Conditional copula-based spatial–temporal drought characteristics analysis—a case study over Turkey. Water 8(10):426. https://doi.org/10.3390/w8100426
Bisht DS, Sridhar V, Mishra A, Chatterjee C, Raghuwanshi NS (2019) Drought characterization over India under projected climate scenario. Int J Climatol 39(4):1889–1911. https://doi.org/10.1002/joc.5922
Cheng L, Hoerling M, Liu Z, Eischeid J (2019) Physical understanding of human-induced changes in U.S. hot droughts using equilibrium climate simulations. J Clim 32(14):4431–4443. https://doi.org/10.1175/JCLI-D-18-0611.1
Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, Oapos, Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an Earth-System model – HadGEM2. Geosci Model Dev 4(4):1051–1075. https://doi.org/10.5194/gmd-4-1051-2011
Danandeh Mehr A, Kahya E (2017) Climate change impacts on catchment-scale extreme rainfall variability: case study of Rize Province, Turkey. J Hydrol Eng 22(3):5016037. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001477
Danandeh Mehr A, Sorman AU, Kahya E, Hesami Afshar M (2020) Climate change impacts on meteorological drought using SPI and SPEI: case study of Ankara, Turkey. Hydrol Sci J 65(2):254–268. https://doi.org/10.1080/02626667.2019.1691218
Demircan M, Gürkan H, Eskioğlu O, Arabaci H, Coşkun M (2017) Climate change projections for Turkey: three models and two scenarios. Turkish J Water Sci Manag 1(1):22–43
Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., Stouffer, R. J., Cooke, W., Dunne, K. A., Harrison, M. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Phillipps, P. J., Sentman, L. T., Samuels, B. L., Spelman, M. J., Winton, M., Wittenberg, A. T., … Zadeh, N. (2012). GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25(19): 6646–6665. https://doi.org/10.1175/JCLI-D-11-00560.1
Duzenli E, Tabari H, Willems P, Yilmaz MT (2018) Decadal variability analysis of extreme precipitation in Turkey and its relationship with teleconnection patterns. Hydrol Process 32(23):3513–3528. https://doi.org/10.1002/hyp.13275
Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg H, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Advan Model Earth Syst 5(3):572–597. https://doi.org/10.1002/JAME.20038@10.1002/(ISSN)1942-2466.MPIESM1
Hangshing L, Dabral PP (2018) Multivariate frequency analysis of meteorological drought using copula. Water Resour Manag 32(5):1741–1758. https://doi.org/10.1007/s11269-018-1901-0
Hao Z, AghaKouchak A, Nakhjiri N, Farahmand A (2014) Global integrated drought monitoring and prediction system. Sci Data 1(1):140001. https://doi.org/10.1038/sdata.2014.1
Hayes M, Svoboda M, Wall N, Widhalm M, Hayes M, Svoboda M, Wall N, Widhalm M (2011) The Lincoln declaration on drought indices: universal meteorological drought index recommended. Bull Am Meteorol Soc 92(4):485–488. https://doi.org/10.1175/2010BAMS3103.1
Ilyina T, Six KD, Segschneider J, Maier-Reimer E, Li H, Núñez-Riboni I (2013) Global ocean biogeochemistry model HAMOCC: model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. J Advan Model Earth Syst 5(2):287–315. https://doi.org/10.1029/2012MS000178
Jungclaus JH, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz U, Notz D, von Storch JS (2013) Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J Advan Model Earth Syst 5(2):422–446. https://doi.org/10.1002/jame.20023
Madadgar S, Moradkhani H (2013) Drought analysis under climate change using copula. J Hydrol Eng 18(7):746–759. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000532
McKee T, Doesken N, Kleist J (1993) The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology 17(22):179–183
Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):202–216
Mortuza MR, Moges E, Demissie Y, Li HY (2019) Historical and future drought in Bangladesh using copula-based bivariate regional frequency analysis. Theor Appl Climatol 135(3–4):855–871. https://doi.org/10.1007/s00704-018-2407-7
Nazeri Tahroudi M, Pourreza-Bilondi M, Ramezani Y (2019) Toward coupling hydrological and meteorological drought characteristics in Lake Urmia Basin, Iran. Theor Appl Climatol 138(3–4):1511–1523. https://doi.org/10.1007/s00704-019-02919-4
R Core Team (2018) R: a language and environment for statistical computing. https://www.r-project.org/
Reick CH, Raddatz T, Brovkin V, Gayler V (2013) Representation of natural and anthropogenic land cover change in MPI-ESM. J Advan Model Earth Syst 5(3):459–482. https://doi.org/10.1002/JAME.20022@10.1002/(ISSN)1942-2466.MPIESM1
Santiago Beguería, Vicente-Serrano SM (2017) Precipitation-evapotranspiration, SPEI: calculation of the standardised index. https://cran.r-project.org/package = SPEI
Shiau JT (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20(5):795–815. https://doi.org/10.1007/s11269-005-9008-9
Shiau J-T, Shen HW (2001) Recurrence analysis of hydrologic droughts of differing severity. J Water Resour Plan Manag 127(1):30–40. https://doi.org/10.1061/(ASCE)0733-9496(2001)127:1(30)
Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) Atmospheric component of the MPI-M Earth System Model: ECHAM6. J Advan Model Earth Syst 5(2):146–172. https://doi.org/10.1002/JAME.20015@10.1002/(ISSN)1942-2466.MPIESM1
Svoboda MD, Fuchs BA (2016) Handbook of drought indicators and indices. World Meteorological Organization (WMO) & Global Water Partnership (GWP)
Tirado MC, Clarke R, Jaykus LA, McQuatters-Gollop A, Frank JM (2010) Climate change and food safety: a review. Food Res Int 43(7):1745–1765. https://doi.org/10.1016/J.FOODRES.2010.07.003
Tosunoglu F, Can I (2016) Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey. Nat Hazards 82(3):1457–1477. https://doi.org/10.1007/s11069-016-2253-9
Tosunoğlu F, Onof C (2017) Joint modelling of drought characteristics derived from historical and synthetic rainfalls: application of generalized linear models and copulas. J Hydrol: Region Stud 14:167–181. https://doi.org/10.1016/j.ejrh.2017.11.001
Tunalıoğlu R, Durdu ÖF (2012) Assessment of future olive crop yield by a comparative evaluation of drought indices: a case study in western Turkey. Theor Appl Climatol 108:397–410. https://doi.org/10.1007/s00704-011-0535-4
Valcke S (2013) The OASIS3 coupler: a European climate modelling community software. Geosci Model Dev 6(2):373–388. https://doi.org/10.5194/gmd-6-373-2013
van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Chang 109(1–2):5–31. https://doi.org/10.1007/s10584-011-0148-z
Wang Q, Yang Y, Liu Y, Tong L, Zhang Q, Li J (2019) Assessing the impacts of drought on grassland net primary production at the global scale. Sci Rep 9(1):14041. https://doi.org/10.1038/s41598-019-50584-4
WMO. 2006. Drought monitoring and early warning: Concepts, progress and future challenges. WMO-No. 1006, World Meteorological Organization, Geneva, Switzerland.
Yan J (2007) Enjoy the joy of copulas: with a package copula. J Stat Softw 21(4):1–21. https://doi.org/10.18637/jss.v021.i04