On the criteria for integrability of the Liénard equation

Applied Mathematics Letters - Tập 57 - Trang 114-120 - 2016
Nikolay A. Kudryashov1, Dmitry I. Sinelshchikov1
1Department of Applied Mathematics, National Research Nuclear University “MEPhI”, 31 Kashirskoe Shosse, 115409 Moscow, Russian Federation

Tài liệu tham khảo

Liénard, 1928, Étude des oscillations entreténues, Rev. Gen. Electr., 23, 901 Liénard, 1928, Étude des oscillations entreténues, Rev. Gen. Electr., 23, 946 Zaitsev, 2002 Guckenheimer, 1983 Lakshmanan, 2003 Andronov, 2011 Chandrasekar, 2005, On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations, Proc. R. Soc. A Math. Phys. Eng. Sci., 461, 2451, 10.1098/rspa.2005.1465 Frenkel, 2009, Traveling solitary waves for doubly-resonant media: Computation via simulated annealing, Appl. Math. Lett., 22, 1112, 10.1016/j.aml.2008.11.009 Gandarias, 2013, Nonlinear self-adjointness and conservation laws for a generalized Fisher equation, Commun. Nonlinear Sci. Numer. Simul., 18, 1600, 10.1016/j.cnsns.2012.11.023 Kudryashov, 2014, A note on solutions of the generalized Fisher equation, Appl. Math. Lett., 32, 53, 10.1016/j.aml.2014.02.009 Rosa, 2015, A conservation law for a generalized chemical Fisher equation, J. Math. Chem., 53, 941, 10.1007/s10910-014-0451-9 Johnson, 1970, A non-linear equation incorporating damping and dispersion, J. Fluid Mech., 42, 49, 10.1017/S0022112070001064 Kudryashov, 2009, On “new travelling wave solutions” of the KdV and the KdV–Burgers equations, Commun. Nonlinear Sci. Numer. Simul., 14, 1891, 10.1016/j.cnsns.2008.09.020 Polyanin, 2011 Estevez, 1990, Painleve analysis of the generalized Burgers–Huxley equation, J. Phys. A. Math. Gen., 23, 4831, 10.1088/0305-4470/23/21/023 Yefimova, 2004, Exact solutions of the Burgers–Huxley equation, J. Appl. Math. Mech., 68, 413, 10.1016/S0021-8928(04)00055-3 Pandey, 2009, A group theoretical identification of integrable cases of the Liénard-type equation ẍ+f(x)ẋ+g(x)=0. I. Equations having nonmaximal number of Lie point symmetries, J. Math. Phys., 50 Pandey, 2009, A group theoretical identification of integrable equations in the Liénard-type equation ẍ+f(x)ẋ+g(x)=0. II. Equations having maximal Lie point symmetries, J. Math. Phys., 50 Mancas, 2013, Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations, Phys. Lett. A., 377, 1434, 10.1016/j.physleta.2013.04.024 Harko, 2014, A class of exact solutions of the Liénard-type ordinary nonlinear differential equation, J. Eng. Math., 89, 193, 10.1007/s10665-014-9696-3 Nakpim, 2010, Linearization of second-order ordinary differential equations by generalized Sundman transformations, symmetry, Integr. Geom. Methods Appl., 6, 1 Kudryashov, 2014, Analytical solutions of the Rayleigh equation for empty and gas-filled bubble, J. Phys. A Math. Theor., 47, 10.1088/1751-8113/47/40/405202 Kudryashov, 2015, Analytical solutions for problems of bubble dynamics, Phys. Lett. A., 379, 798, 10.1016/j.physleta.2014.12.049 Kudryashov, 2015, On the connection of the quadratic Liénard equation with an equation for the elliptic functions, Regul. Chaotic Dyn., 20, 486, 10.1134/S1560354715040073 Nakpim, 2010, Linearization of third-order ordinary differential equations by generalized Sundman transformations: The case X‴+αX=0, Commun. Nonlinear Sci. Numer. Simul., 15, 1717, 10.1016/j.cnsns.2009.06.020 Moyo, 2011, Application of the generalised Sundman transformation to the linearisation of two second-order ordinary differential equations, J. Nonlinear Math. Phys., 18, 213, 10.1142/S1402925111001386 Ince, 1956