The design and implementation of an in-situ mechanical loading apparatus used during proton-irradiations
Tài liệu tham khảo
Higgy, 1972, Effect of neutron irradiation on the tensile properties of zircaloy-2 and zircaloy-4, J. Nucl. Mater., 44, 215, 10.1016/0022-3115(72)90099-2
Rieger, 1974, Strength and ductility of neutron irradiated and textured zircaloy-2, Zircon. Nucl. Appl., 551, 355, 10.1520/STP32125S
Griffiths, 1988, A review of microstructure evolution in zirconium alloys during irradiation, J. Nucl. Mater., 159, 10.1016/0022-3115(88)90093-1
Holt, 2008, In-reactor deformation of cold-worked Zr–2.5Nb pressure tubes, J. Nucl. Mater., 372
Adamson, 2019, Irradiation creep and growth of zirconium alloys: a critical review, J. Nucl. Mater., 521, 167, 10.1016/j.jnucmat.2019.04.021
Rafique, 2016, Surface, structural and tensile properties of proton beam irradiated zirconium, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 368, 120, 10.1016/j.nimb.2015.12.001
Foster, 2016, Irradiation creep and irradiation stress relaxation of 316 and 304L stainless steels in thermal and fast neutron spectrum reactors, 1339
Byun, 2013, Principles and practice of a bellows-loaded compact irradiation vehicle, J. Nucl. Mater., 439, 108, 10.1016/j.jnucmat.2013.03.096
Chapman, 1984, Irradiation creep and growth during proton and neutron bombardment of zircaloy-2 plate, Zircon. Nucl. Ind. Sixth Int. Symp., 824, 343
2016
Zinkle, 2018, Opportunities and limitations for ion beams in radiation effects studies: bridging critical gaps between charged particle and neutron irradiations, Scr. Mater., 143, 154, 10.1016/j.scriptamat.2017.06.041
Jepeal, 2021, Intermediate energy proton irradiation: rapid, high-fidelity materials testing for fusion and fission energy systems, Mater. Des., 200, 10.1016/j.matdes.2020.109445
Haley, 2020, Microstructural examination of neutron, proton and self-ion irradiation damage in a model Fe9Cr alloy, J. Nucl. Mater., 533, 10.1016/j.jnucmat.2020.152130
Hudson, 1977, The irradiation creep of nickel and AISI 321 stainless steel during 4 MeV proton bombardment, J. Nucl. Mater., 65, 279, 10.1016/0022-3115(77)90066-6
Xu, 2015, Proton irradiation creep of FM steel T91, J. Nucl. Mater., 459, 183, 10.1016/j.jnucmat.2015.01.023
Xu, 2013, In situ proton irradiation creep of ferritic–martensitic steel T91, J. Nucl. Mater., 441
Was, 2007, Advantages and disadvantages of the various particle types
Özerinç, 2014, In situ creep measurements on micropillar samples during heavy ion irradiation, J. Nucl. Mater., 451, 104, 10.1016/j.jnucmat.2014.03.037
Özerinç, 2015, Direct measurements of irradiation-induced creep in micropillars of amorphous Cu56Ti38Ag6, Zr52Ni48, Si, and SiO2, J. Appl. Phys., 117, 10.1063/1.4905019
Chow, 2004, Deformation of zirconium irradiated by 4.4 MeV protons at 347K, J. Nucl. Mater., 328, 10.1016/j.jnucmat.2004.01.017
McCormick, 2010, Digital image correlation, Mater. Today, 13, 52, 10.1016/S1369-7021(10)70235-2
Jones, 2017, Distortion of Digital Image Correlation (DIC) Displacements and Strains from Heat Waves, Exp. Mech., 58
Olander, 2017, 12.2.1 Cross Section, 1
Ziegler, 2010, SRIM – The stopping and range of ions in matter, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 268
Trinkaus, 2002, Conditions for effects of radiation pulsing, J. Nucl. Mater., 307–311, 1705, 10.1016/S0022-3115(02)01133-9
Simonen, 1984, Pulsed flux effects on radiation damage, J. Nucl. Mater., 122, 391, 10.1016/0022-3115(84)90628-7
Lee, 1983, Effects of pulsed dual-ion irradiation on phase transformations and microstructure in Ti-modified austenitic alloy, J. Nucl. Mater., 117, 123, 10.1016/0022-3115(83)90018-1
Šimečková, 2021, The activation cross section measurements of proton-induced reactions on Li and Ta in the energy region 12.5–34 MeV, Nucl. Phys. A., 1016, 10.1016/j.nuclphysa.2021.122310
Hasselkamp, 1992
G. Choppin, J.O. Liljenzin, J. Rydberg, and C. Ekberg, “10.5 Elastic scattering,” in Radiochemistry and Nuclear Chemistry, Elsevier. [Online]. Available: https://app.knovel.com/hotlink/pdf/id:kt00BWZKA3/radiochemistry-nuclear/elastic-scattering.
Chen, 2017
Garner, 2017, The effect of substrate texture and oxidation temperature on oxide texture development in zirconium alloys, J. Nucl. Mater., 484, 347, 10.1016/j.jnucmat.2016.10.037
Howe, 1960, The effect of neutron irradiation on the tensile properties of zircaloy-2, J. Nucl. Mater., 2, 248, 10.1016/0022-3115(60)90059-3
Adamson, 2009, 39
Hayes, 2006, Creep of zirconium and zirconium alloys, Metall. Mater. Trans. A, 37A, 8
Fidleris, 1988, The Irradiation creep and growth phenomena, J. Nucl. Mater., 159, 22, 10.1016/0022-3115(88)90083-9
Was, 2007, 14.2 Irradiation creep, 725
Tinti, 1983, Uniaxial in-reactor creep of zircaloy-2: stress, flux, and temperature dependence, Nucl. Technol., 60, 104, 10.13182/NT83-A33106