SoNar, a Highly Responsive NAD+/NADH Sensor, Allows High-Throughput Metabolic Screening of Anti-tumor Agents
Tài liệu tham khảo
Bair, 2012
Belousov, 2006, Genetically encoded fluorescent indicator for intracellular hydrogen peroxide, Nat. Methods, 3, 281, 10.1038/nmeth866
Bey, 2007, An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone, Proc. Natl. Acad. Sci. USA, 104, 11832, 10.1073/pnas.0702176104
Blanco, 2010, Beta-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy, Cancer Res., 70, 3896, 10.1158/0008-5472.CAN-09-3995
Cairns, 2011, Regulation of cancer cell metabolism, Nat. Rev. Cancer, 11, 85, 10.1038/nrc2981
Chen, 2011, Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2, Oncogene, 30, 4297, 10.1038/onc.2011.137
Christofk, 2008, The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth, Nature, 452, 230, 10.1038/nature06734
Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143
Cullen, 2003, Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism, Cancer Res., 63, 5513
Dai, 2013, KEAP1-dependent synthetic lethality induced by AKT and TXNRD1 inhibitors in lung cancer, Cancer Res., 73, 5532, 10.1158/0008-5472.CAN-13-0712
Dooley, 2004, Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators, J. Biol. Chem., 279, 22284, 10.1074/jbc.M312847200
Gorrini, 2013, Modulation of oxidative stress as an anticancer strategy, Nat. Rev. Drug Discov., 12, 931, 10.1038/nrd4002
Huang, 2012, An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis, Cancer Res., 72, 3038, 10.1158/0008-5472.CAN-11-3135
Hung, 2011, Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor, Cell Metab., 14, 545, 10.1016/j.cmet.2011.08.012
Koul, 2006, Inhibition of Akt survival pathway by a small-molecule inhibitor in human glioblastoma, Mol. Cancer Ther., 5, 637, 10.1158/1535-7163.MCT-05-0453
Le, 2010, Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression, Proc. Natl. Acad. Sci. USA, 107, 2037, 10.1073/pnas.0914433107
Mandal, 2005, The Akt inhibitor KP372-1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells, Br. J. Cancer, 92, 1899, 10.1038/sj.bjc.6602595
Mandal, 2006, The Akt inhibitor KP372-1 inhibits proliferation and induces apoptosis and anoikis in squamous cell carcinoma of the head and neck, Oral Oncol., 42, 430, 10.1016/j.oraloncology.2005.09.011
Ostrander, 2010, Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status, Cancer Res., 70, 4759, 10.1158/0008-5472.CAN-09-2572
Pink, 2000, NAD(P)H:Quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity, J. Biol. Chem., 275, 5416, 10.1074/jbc.275.8.5416
Pradhan, 1995, Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species, J. Photochem. Photobiol. B, 31, 101, 10.1016/1011-1344(95)07178-4
Ran, 2013, Genome engineering using the CRISPR-Cas9 system, Nat. Protoc., 8, 2281, 10.1038/nprot.2013.143
Reinicke, 2005, Development of beta-lapachone prodrugs for therapy against human cancer cells with elevated NAD(P)H:quinone oxidoreductase 1 levels, Clin. Cancer Res., 11, 3055, 10.1158/1078-0432.CCR-04-2185
Siegel, 2012, NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones, Biochem. Pharmacol., 83, 1033, 10.1016/j.bcp.2011.12.017
Singh, 2006, Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer, PLoS Med., 3, e420, 10.1371/journal.pmed.0030420
Skala, 2007, In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia, Proc. Natl. Acad. Sci. USA, 104, 19494, 10.1073/pnas.0708425104
Sporn, 2012, NRF2 and cancer: the good, the bad and the importance of context, Nat. Rev. Cancer, 12, 564, 10.1038/nrc3278
Thimmulappa, 2002, Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray, Cancer Res., 62, 5196
Vander Heiden, 2011, Targeting cancer metabolism: a therapeutic window opens, Nat. Rev. Drug Discov., 10, 671, 10.1038/nrd3504
Vander Heiden, 2009, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, 324, 1029, 10.1126/science.1160809
Warburg, 1956, On the origin of cancer cells, Science, 123, 309, 10.1126/science.123.3191.309
Williamson, 1967, The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver, Biochem. J., 103, 514, 10.1042/bj1030514
Yamada, 2006, The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry, Anal. Biochem., 352, 282, 10.1016/j.ab.2006.02.017
Yang, 2007, Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival, Cell, 130, 1095, 10.1016/j.cell.2007.07.035
Yu, 2009, Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level, J. Photochem. Photobiol. B, 95, 46, 10.1016/j.jphotobiol.2008.12.010
Zeng, 2006, Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia, Cancer Res., 66, 3737, 10.1158/0008-5472.CAN-05-1278
Zhao, 2015, Profiling metabolic states with genetically encoded fluorescent biosensors for NADH, Curr. Opin. Biotechnol., 31, 86, 10.1016/j.copbio.2014.08.007
Zhao, 2011, Genetically encoded fluorescent sensors for intracellular NADH detection, Cell Metab., 14, 555, 10.1016/j.cmet.2011.09.004