Facing spatial massive data in science and society: Variable selection for spatial models
Tài liệu tham khảo
Bivand, 2019
Bivand, 2008, 239
Bivand, 2013
Bivand, 2015, Comparing Implementations of Estimation Methods for Spatial Econometrics, J. Stat. Softw., 63, 1, 10.18637/jss.v063.i18
Botev, 2020
Cai, 2020, Variable selection and estimation for high-dimensional spatial autoregressive models, Scand. J. Stat., 47, 587, 10.1111/sjos.12452
Chu, 2011, Penalized maximum likelihood estimation and variable selection in geostatistics, Ann. Statist., 39, 2607, 10.1214/11-AOS919
Friedman, 2010, Regularization paths for generalized linear models via coordinate descent, J. Statist. Softw., 33, 1, 10.18637/jss.v033.i01
Gaetan, 2010
Goulet, 2019
Hastie, 2013
Hastie, 2016
Horn, 2013
Huang, 2007, Optimal geostatistical model selection, J. Amer. Statist. Assoc., 102, 1009, 10.1198/016214507000000491
Kelejian, 1998, A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances, J. Real Estate Financ. Econ., 17, 99, 10.1023/A:1007707430416
Knight, 2000, Asymptotics for lasso-type estimators, Ann. Statist., 28, 1356
Mangiafico, 2021
Nagelkerke, 1991, A note on a general definition of the coefficient of determination, Biometrika, 78, 691, 10.1093/biomet/78.3.691
Nandy, 2017, Additive model building for spatial regression, J. R. Stat. Soc. Ser. B Stat. Methodol., 79, 779, 10.1111/rssb.12195
Pebesma, 2005, Classes and methods for spatial data in R, R News, 5, 9
Perrot-Dockès, 2018, Variable selection in multivariate linear models with high-dimensional covariance matrix estimation, J. Multivariate Anal., 166, 78, 10.1016/j.jmva.2018.02.006
2020
Reyes, 2012, Selection of spatial-temporal lattice models: assessing the impact of climate conditions on a mountain pine beetle outbreak, J. Agric. Biol. Environ. Stat., 17, 508, 10.1007/s13253-012-0103-0
Simon, 2013, A sparse-group lasso, J. Comput. Graph. Statist., 22, 231, 10.1080/10618600.2012.681250
Stabler, 2013
Tibshirani, 1996, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 267
Tibshirani, 2011, Regression shrinkage and selection via the lasso: a retrospective, J. R. Stat. Soc. Ser. B Stat. Methodol., 73, 273, 10.1111/j.1467-9868.2011.00771.x
Tibshirani, 2005, Parsity and smoothness via the fused lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 67, 91, 10.1111/j.1467-9868.2005.00490.x
Venables, 2002
Wang, 2009, Variable selection in spatial regression via penalized least squares, Canad. J. Statist., 37, 607, 10.1002/cjs.10032
Yuan, 2006, Model selection and estimation in regression with grouped variables, J. R. Stat. Soc. Ser. B Stat. Methodol., 68, 49, 10.1111/j.1467-9868.2005.00532.x
Zhao, 2006, On model selection consistency of lasso, J. Mach. Learn. Res., 7, 2541
Zhu, 2010, On selection of spatial linear models for lattice data, J. R. Stat. Soc. Ser. B Stat. Methodol., 72, 389, 10.1111/j.1467-9868.2010.00739.x
Zou, 2006, The adaptive lasso and its oracle properties, J. Amer. Statist. Assoc., 101, 1418, 10.1198/016214506000000735
Zou, 2005, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B Stat. Methodol., 67, 301, 10.1111/j.1467-9868.2005.00503.x
