Facing spatial massive data in science and society: Variable selection for spatial models

Spatial Statistics - Tập 50 - Trang 100627 - 2022
Romina Gonella1, Mathias Bourel1, Liliane Bel2
1IMERL, Facultad Ingeniería, Universidad de la República, Montevideo, Uruguay
2UMR MIA-Paris, AgroParisTech, INRAE, Université Paris-Saclay, France

Tài liệu tham khảo

Bivand, 2019 Bivand, 2008, 239 Bivand, 2013 Bivand, 2015, Comparing Implementations of Estimation Methods for Spatial Econometrics, J. Stat. Softw., 63, 1, 10.18637/jss.v063.i18 Botev, 2020 Cai, 2020, Variable selection and estimation for high-dimensional spatial autoregressive models, Scand. J. Stat., 47, 587, 10.1111/sjos.12452 Chu, 2011, Penalized maximum likelihood estimation and variable selection in geostatistics, Ann. Statist., 39, 2607, 10.1214/11-AOS919 Friedman, 2010, Regularization paths for generalized linear models via coordinate descent, J. Statist. Softw., 33, 1, 10.18637/jss.v033.i01 Gaetan, 2010 Goulet, 2019 Hastie, 2013 Hastie, 2016 Horn, 2013 Huang, 2007, Optimal geostatistical model selection, J. Amer. Statist. Assoc., 102, 1009, 10.1198/016214507000000491 Kelejian, 1998, A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances, J. Real Estate Financ. Econ., 17, 99, 10.1023/A:1007707430416 Knight, 2000, Asymptotics for lasso-type estimators, Ann. Statist., 28, 1356 Mangiafico, 2021 Nagelkerke, 1991, A note on a general definition of the coefficient of determination, Biometrika, 78, 691, 10.1093/biomet/78.3.691 Nandy, 2017, Additive model building for spatial regression, J. R. Stat. Soc. Ser. B Stat. Methodol., 79, 779, 10.1111/rssb.12195 Pebesma, 2005, Classes and methods for spatial data in R, R News, 5, 9 Perrot-Dockès, 2018, Variable selection in multivariate linear models with high-dimensional covariance matrix estimation, J. Multivariate Anal., 166, 78, 10.1016/j.jmva.2018.02.006 2020 Reyes, 2012, Selection of spatial-temporal lattice models: assessing the impact of climate conditions on a mountain pine beetle outbreak, J. Agric. Biol. Environ. Stat., 17, 508, 10.1007/s13253-012-0103-0 Simon, 2013, A sparse-group lasso, J. Comput. Graph. Statist., 22, 231, 10.1080/10618600.2012.681250 Stabler, 2013 Tibshirani, 1996, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 267 Tibshirani, 2011, Regression shrinkage and selection via the lasso: a retrospective, J. R. Stat. Soc. Ser. B Stat. Methodol., 73, 273, 10.1111/j.1467-9868.2011.00771.x Tibshirani, 2005, Parsity and smoothness via the fused lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 67, 91, 10.1111/j.1467-9868.2005.00490.x Venables, 2002 Wang, 2009, Variable selection in spatial regression via penalized least squares, Canad. J. Statist., 37, 607, 10.1002/cjs.10032 Yuan, 2006, Model selection and estimation in regression with grouped variables, J. R. Stat. Soc. Ser. B Stat. Methodol., 68, 49, 10.1111/j.1467-9868.2005.00532.x Zhao, 2006, On model selection consistency of lasso, J. Mach. Learn. Res., 7, 2541 Zhu, 2010, On selection of spatial linear models for lattice data, J. R. Stat. Soc. Ser. B Stat. Methodol., 72, 389, 10.1111/j.1467-9868.2010.00739.x Zou, 2006, The adaptive lasso and its oracle properties, J. Amer. Statist. Assoc., 101, 1418, 10.1198/016214506000000735 Zou, 2005, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B Stat. Methodol., 67, 301, 10.1111/j.1467-9868.2005.00503.x