A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression

Cell - Tập 143 - Trang 1174-1189 - 2010
Edward L. Huttlin1, Mark P. Jedrychowski1, Joshua E. Elias1, Tapasree Goswami1, Ramin Rad2, Sean A. Beausoleil1, Judit Villén1, Wilhelm Haas1, Mathew E. Sowa1,3, Steven P. Gygi4,2
1Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
2Taplin Biological Mass Spectrometry Facility, Harvard Medical School, Boston, MA 02115, USA
3Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
4Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA

Tài liệu tham khảo

Allaire, 2006, Connecdenn, a novel DENN domain-containing protein of neuronal clathrin-coated vesicles functioning in synaptic vesicle endocytosis, J. Neurosci., 26, 13202, 10.1523/JNEUROSCI.4608-06.2006 Ashburner, 2000, Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat. Genet., 25, 25, 10.1038/75556 Beausoleil, 2006, A probability-based approach for high-throughput protein phosphorylation analysis and site localization, Nat. Biotechnol., 24, 1285, 10.1038/nbt1240 Castellanos-Serra, 2002, Inhibition of unwanted proteolysis during sample preparation: evaluation of its efficiency in challenge experiments, Electrophoresis, 23, 1745, 10.1002/1522-2683(200206)23:11<1745::AID-ELPS1745>3.0.CO;2-A Chen, 2001, SNARE-mediated membrane fusion, Nat. Rev. Mol. Cell Biol., 2, 98, 10.1038/35052017 Danial, 2009, BAD: undertaker by night, candyman by day, Oncogene, 27, S53 Dehmelt, 2005, The MAP2/Tau family of microtubule-associated proteins, Genome Biol., 6, 204, 10.1186/gb-2004-6-1-204 Dennis, 2003, DAVID: Database for Annotation, Visualization, and Integrated Discovery, Genome Biol., 4, 3, 10.1186/gb-2003-4-5-p3 Diella, 2008, Phospho.ELM: a database of phosphorylation sites–update 2008, Nucleic Acids Res., 36, D240, 10.1093/nar/gkm772 Duta, 2006, Differential expression of spleen tyrosine kinase Syk isoforms in tissues: Effects of the microbial flora, Histochem. Cell Biol., 126, 495, 10.1007/s00418-006-0188-z Elias, 2007, Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry, Nat. Methods, 4, 207, 10.1038/nmeth1019 Eng, 1994, An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database, J. Am. Soc. Mass Spectrom., 5, 976, 10.1016/1044-0305(94)80016-2 Forde, 2007, Glycogen synthase kinase 3: a key regulator of cellular fate, Cell. Mol. Life Sci., 64, 1930, 10.1007/s00018-007-7045-7 Goh, 2007, The human disease network, Proc. Natl. Acad. Sci. USA, 104, 8685, 10.1073/pnas.0701361104 Haemmerle, 2006, Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase, Science, 312, 734, 10.1126/science.1123965 Halpain, 2006, The MAP1 family of microtubule-associated proteins, Genome Biol., 7, 224, 10.1186/gb-2006-7-6-224 Hornbeck, 2004, PhosphoSite: A bioinformatics resource dedicated to physiological protein phosphorylation, Proteomics, 4, 1551, 10.1002/pmic.200300772 Itoh, 1997, Phosphorylation states of microtubule-associated protein 2 (MAP2) determine the regulatory role of MAP2 in microtubule dynamics, Biochemistry, 36, 12574, 10.1021/bi962606z Jensen, 2009, STRING 8–a global view on proteins and their functional interactions in 630 organisms, Nucleic Acids Res., 37, D412, 10.1093/nar/gkn760 Jones, 1999, Protein secondary structure prediction based on position-specific scoring matrices, J. Mol. Biol., 292, 195, 10.1006/jmbi.1999.3091 Kanehisa, 2010, KEGG for representation and analysis of molecular networks involving diseases and drugs, Nucleic Acids Res., 38, D355, 10.1093/nar/gkp896 Kao, 2002, A protein kinase A-dependent molecular switch in synapsins regulates neurite outgrowth, Nat. Neurosci., 5, 431, 10.1038/nn840 Kislinger, 2006, Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling, Cell, 125, 173, 10.1016/j.cell.2006.01.044 Lienhard, 2008, Non-functional phosphorylations?, Trends Biochem. Sci., 33, 351, 10.1016/j.tibs.2008.05.004 Liu, 2004, A model for random sampling and estimation of relative protein abundance in shotgun proteomics, Anal. Chem., 76, 4193, 10.1021/ac0498563 Lizcano, 2004, LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1, EMBO J., 23, 833, 10.1038/sj.emboj.7600110 Lukk, 2010, A global map of human gene expression, Nat. Biotechnol., 28, 322, 10.1038/nbt0410-322 Miller, 2008, Linear motif atlas for phosphorylation-dependent signaling, Sci. Signal., 1, ra2, 10.1126/scisignal.1159433 Miyoshi, 2007, Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes, J. Biol. Chem., 282, 996, 10.1074/jbc.M605770200 Obenauer, 2003, Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs, Nucleic Acids Res., 31, 3635, 10.1093/nar/gkg584 Olsen, 2006, Global, in vivo, and site-specific phosphorylation dynamics in signaling networks, Cell, 127, 635, 10.1016/j.cell.2006.09.026 Olsen, 2010, Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis, Sci. Signal., 3, ra3, 10.1126/scisignal.2000475 Pan, 2009, Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions, Mol. Cell. Proteomics, 8, 443, 10.1074/mcp.M800258-MCP200 Pasini, 2008, Deep coverage mouse red blood cell proteome: a first comparison with the human red blood cell, Mol. Cell. Proteomics, 7, 1317, 10.1074/mcp.M700458-MCP200 Peng, 2006, Length-dependent prediction of protein intrinsic disorder, BMC Bioinformatics, 7, 208, 10.1186/1471-2105-7-208 Pinkse, 2004, Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns, Anal. Chem., 76, 3935, 10.1021/ac0498617 2004 Schwartz, 2009, Predicting protein post-translational modifications using meta-analysis of proteome scale data sets, Mol. Cell. Proteomics, 8, 365, 10.1074/mcp.M800332-MCP200 Shannon, 1948, A mathematical theory of communication, Bell Syst. Tech. J., 27, 379, 10.1002/j.1538-7305.1948.tb01338.x Steinberg, 1993, Autoactivation of catalytic (C alpha) subunit of cyclic AMP-dependent protein kinase by phosphorylation of threonine 197, Mol. Cell. Biol., 13, 2332, 10.1128/MCB.13.4.2332 Su, 2004, A gene atlas of the mouse and human protein-encoding transcriptomes, Proc. Natl. Acad. Sci. USA, 101, 6062, 10.1073/pnas.0400782101 Timm, 2003, MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1, EMBO J., 22, 5090, 10.1093/emboj/cdg447 Timm, 2008, Glycogen synthase kinase (GSK) 3beta directly phosphorylates Serine 212 in the regulatory loop and inhibits microtubule affinity-regulating kinase (MARK) 2, J. Biol. Chem., 283, 18873, 10.1074/jbc.M706596200 Timm, 2008, Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein, BMC Neurosci., 9, S9, 10.1186/1471-2202-9-S2-S9 Ulanova, 2005, Syk tyrosine kinase participates in beta1-integrin signaling and inflammatory responses in airway epithelial cells, Am. J. Physiol. Lung Cell. Mol. Physiol., 288, L497, 10.1152/ajplung.00246.2004 Villen, 2007, Large-scale phosphorylation analysis of mouse liver, Proc. Natl. Acad. Sci. USA, 104, 1488, 10.1073/pnas.0609836104 Villen, 2008, The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry, Nat. Protoc., 3, 1630, 10.1038/nprot.2008.150 Watt, 2008, Regulation and function of triacylglycerol lipases in cellular metabolism, Biochem. J., 414, 313, 10.1042/BJ20080305 Wisniewski, 2010, Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology, J. Proteome Res., 9, 3280, 10.1021/pr1002214 Wu, 2003, The Protein Information Resource, Nucleic Acids Res., 31, 345, 10.1093/nar/gkg040 Adams, J.A., McGlone, M.L., Gibson, R., and Taylor, S.S. (1995). Phosphorylation modulates catalytic function and regulation in the cAMP-dependent protein kinase. Biochemistry 34, 2447–2454. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29. Beausoleil, S.A., Villen, J., Gerber, S.A., Rush, J., and Gygi, S.P. (2006). A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24, 1285–1292. Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc., B 57, 289–300. Boersema, P.J., Mohammed, S., and Heck, A.J. (2009). Phosphopeptide fragmentation and analysis by mass spectrometry. J. Mass Spectrom. 44, 861–878. Bult, C.J., Eppig, J.T., Kadin, J.A., Richardson, J.E., and Blake, J.A. (2008). The Mouse Genome Database (MGD): mouse biology and model systems. Nucleic Acids Res. 36, D724–D728. Dennis, G., Jr., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C., and Lempicki, R.A. (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, 3. Diella, F., Gould, C.M., Chica, C., Via, A., and Gibson, T.J. (2008). Phospho.ELM: a database of phosphorylation sites–update 2008. Nucleic Acids Res. 36, D240–D244. Du, X., Yang, F., Manes, N.P., Stenoien, D.L., Monroe, M.E., Adkins, J.N., States, D.J., Purvine, S.O., Camp, D.G., 2nd, and Smith, R.D. (2008). Linear discriminant analysis-based estimation of the false discovery rate for phosphopeptide identifications. J. Proteome Res. 7, 2195–2203. Elias, J.E., and Gygi, S.P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214. Eng, J.K., McCormack, A.L., and Yates, J.R., 3rd. (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989. Hornbeck, P.V., Chabra, I., Kornhauser, J.M., Skrzypek, E., and Zhang, B. (2004). PhosphoSite: A bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics 4, 1551–1561. Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57. Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., et al. (2009). STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416. Jones, D.T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202. Kall, L., Canterbury, J.D., Weston, J., Noble, W.S., and MacCoss, M.J. (2007). Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 4, 923–925. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., and Hirakawa, M. (2010). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38, D355–D360. Kislinger, T., Cox, B., Kannan, A., Chung, C., Hu, P., Ignatchenko, A., Scott, M.S., Gramolini, A.O., Morris, Q., Hallett, M.T., et al. (2006). Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell 125, 173–186. Miyoshi, H., Perfield, J.W., 2nd, Souza, S.C., Shen, W.J., Zhang, H.H., Stancheva, Z.S., Kraemer, F.B., Obin, M.S., and Greenberg, A.S. (2007). Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J. Biol. Chem. 282, 996–1002. Moritz, A., Li, Y., Guo, A., Villen, J., Wang, Y., MacNeill, J., Kornhauser, J., Sprott, K., Zhou, J., Possemato, A., et al. (2010). Akt-RSK-S6 kinase signaling networks activated by oncogenic receptor tyrosine kinases. Sci. Signal. 3, ra64. Obenauer, J.C., Cantley, L.C., and Yaffe, M.B. (2003). Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 31, 3635–3641. Olsen, J.V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M.L., Jensen, L.J., Gnad, F., Cox, J., Jensen, T.S., Nigg, E.A., et al. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3. Peng, K., Radivojac, P., Vucetic, S., Dunker, A.K., and Obradovic, Z. (2006). Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7, 208. Rappsilber, J., Ishihama, Y., and Mann, M. (2003). Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670. Shannon, C.E. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858. Steichen, J.M., Iyer, G.H., Li, S., Saldanha, S.A., Deal, M.S., Woods, V.L., Jr., and Taylor, S.S. (2010). Global consequences of activation loop phosphorylation on protein kinase A. J. Biol. Chem. 285, 3825–3832. Steinberg, R.A., Cauthron, R.D., Symcox, M.M., and Shuntoh, H. (1993). Autoactivation of catalytic (C alpha) subunit of cyclic AMP-dependent protein kinase by phosphorylation of threonine 197. Mol. Cell. Biol. 13, 2332–2341. Villen, J., and Gygi, S.P. (2008). The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protoc. 3, 1630–1638. Villen, J., Beausoleil, S.A., Gerber, S.A., and Gygi, S.P. (2007). Large-scale phosphorylation analysis of mouse liver. Proc. Natl. Acad. Sci. USA 104, 1488–1493. Watt, M.J., and Steinberg, G.R. (2008). Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem. J. 414, 313–325. Wu, C.H., Yeh, L.S., Huang, H., Arminski, L., Castro-Alvear, J., Chen, Y., Hu, Z., Kourtesis, P., Ledley, R.S., Suzek, B.E., et al. (2003). The Protein Information Resource. Nucleic Acids Res. 31, 345–347. Zhang, J., Ma, J., Dou, L., Wu, S., Qian, X., Xie, H., Zhu, Y., and He, F. (2009). Bayesian nonparametric model for the validation of peptide identification in shotgun proteomics. Mol. Cell. Proteomics 8, 547–557. Zybailov, B., Mosley, A.L., Sardiu, M.E., Coleman, M.K., Florens, L., and Washburn, M.P. (2006). Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res. 5, 2339–2347.