Five-Parameter Grain Boundary Inclination Recovery with EBSD and Interaction Volume Models
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science - Tập 45 - Trang 4165-4172 - 2014
Tóm tắt
While electron backscatter diffraction (EBSD) patterns are often used to present two-dimensional information about a material microstructure, they are in fact a product of the three-dimensional electron interaction volume. Consequently, 3D spatial information exists in EBSD images, which is generally not accessed. Specifically, the inclination of the grain boundary plane may be observed in EBSD patterns taken near grain boundaries. If, at the same time, the shape of an electron interaction volume in the material is known, a grain boundary plane normal direction can be obtained from a sequence of EBSD images taken stepwise in a line crossing the grain boundary. Here, these two principles are used for demonstrating the determination of grain boundary normal vectors from EBSD images. Coherent twin boundaries and focused ion beam serial scan data are used for validation. Results indicate a mean error for this approach of 3 deg with a standard deviation of 3.8 deg.
Tài liệu tham khảo
A.P. Sutton and R.W. Balluffi: Interfaces in Crystalline Materials, Oxford University Press, Oxford, 1995.
T.Watanabe: in Boundaries and Interfaces in Materials: The David A. Smith Symposium, R.C. Pond, W.A.T. Clark, and A.H. King, eds., The Minerals, Metals and Materials Society, Warrendale, PA, 1998, pp. 19–29.
E.M. Lehockey, G. Palumbo, and P. Lin: in Boundaries and Interfaces in Materials: The David A. Smith Symposium, R.C. Pond, W.A.T. Clark, and A.H. King, eds., The Minerals, Metals and Materials Society, Warrendale, PA, 1998, pp. 45–50.
Randle V.: Acta Metall. Mater. 1994;42:1769–84.
Kim C.-S., Rollett A.D., Rohrer G.S.: Scripta Mater. 2006;54:1005–09.
Saylor D.M., Morawiec A., Rohrer G.S.: Acta Mater., 2003;51:3663–74.
Saylor D.M., El-Dasher B.S., Adams B.L., Rohrer G.S.: Metall. Mater. Trans. A, 2004;35:1981–89.
King A., Herbig M., Ludwig W., Reischig P., Lauridsen E.M., Marrow T., Buffière J.Y.: Nucl. Instrum. Methods Phys. Res. Sect. B 2010;268:291–96.
Chen D., Kuo J.-C.: Microsc. Microanal. 2013;19:4–7.
Deal A., Tao X., Eades A.:. Surf. Interface Anal.. 2005;37:1017–20.
Joy D.C. Monte Carlo Modeling for Electron Microscopy and Microanalysis. New York: Oxford University Press, 1995.
Drouin D., Couture A.R., Joly D., Tastet X., Aimez V., Gauvin R.: Scanning 2007;29:92–101.
N.W.M. Ritchie: DTSA-II. Gaithersburg, MD, 2011. http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html.
J. Kacher, B.L. Adams, D. Fullwood, C. Landon (2008) In Applications of Texture Analysis, John Wiley & Sons, Inc. 2008, pp. 147–54.
Joy D.C.: Scanning Microsc. 1991;5:329–37.
Werner W.S.M.: Surf. Interface Anal.., 2001;31:141–76.
Deal A., Hooghan T., Eades A.: Ultramicroscopy 2008;108:116–25.
Winkelmann A.: J. Microsc. 2010;239:32–45.
Ren S.X., Kenik E.A., Alexander K.B., Goyal A.: Microsc. Microanal.. 1998;4:15–22.
Kacher J., Landon C., Adams B.L., Fullwood D.: Ultramicroscopy 2009;109:1148–56.