Developing a new form of the Kozeny–Carman parameter for structured porous media through lattice-Boltzmann modeling

Computers & Fluids - Tập 75 - Trang 35-41 - 2013
A. Ebrahimi Khabbazi1, J.S. Ellis1, A. Bazylak1
1Microscale Energy Systems Transport Phenomena Laboratory, Department of Mechanical & Industrial Engineering, Faculty of Applied Science & Engineering, University of Toronto, 5 Kings College Road, Toronto, Ontario, Canada M5S 3G8

Tài liệu tham khảo

Hocking, 2004, The lens of freshwater in a tropical island – 2D withdrawal, Comput Fluids, 33, 19, 10.1016/S0045-7930(03)00035-5 Dong, 2010, Lattice Boltzmann simulation of viscous fingering phenomenon of immiscible fluids displacement in a channel, Comput Fluids, 39, 768, 10.1016/j.compfluid.2009.12.005 Doughty, 2004, Modeling supercritical carbon dioxide injection in heterogeneous porous media, Vadose Zone J, 3, 837, 10.2113/3.3.837 Zerai, 2005, Flow characterization through a network cell using particle image velocimetry, Transp Porous Media, 60, 159, 10.1007/s11242-004-4796-6 Parseval, 1997, A simple model for the variation of permeability due to partial saturation in dual scale porous media, Transp Porous Media, 27, 243, 10.1023/A:1006544107324 Nghiem, 2010, Simulation and optimization of trapping processes for CO2 storage in saline aquifers, J Can Pet Technol, 49, 15, 10.2118/139429-PA Jerauld, 1990, The effect of pore-structure on hysteresis in relative permeability and capillary pressure: pore-level modeling, Transp Porous Med, 5, 103, 10.1007/BF00144600 Bryant, 1992, Prediction of relative permeability in simple porous media, Phys Rev A, 46, 2004, 10.1103/PhysRevA.46.2004 Dana, 1999, Gas relative permeability and pore structure of sandstones, Int J Rock Mech Min Sci, 36, 613, 10.1016/S0148-9062(99)00037-6 Audigane, 2007, Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site, North Sea, Am J Sci, 307, 974, 10.2475/07.2007.02 Izgec, 2008, CO2 injection into saline carbonate aquifer formations I: laboratory investigation, Transp Porous Med, 72, 1, 10.1007/s11242-007-9132-5 Ji C, Ahmadi G, Smith DH. Experimental and computational studies of fluid flow phenomena in carbon dioxide sequestration in brine and oil fields. In: First national conference on carbon sequestration, WA, USA; 2001. Juanes, 2006, Impact of relative permeability hysteresis on geological CO2 storage, Water Resour Res, 42, W12418, 10.1029/2005WR004806 Oldenburg C, Benson S. CO2 injection for enhanced gas production and carbon sequestration. In: SPE international petroleum conference and exhibition, Villahermosa, Mexico; 2002. Ramstad, 2011, Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks, Transp Porous Med Xu, 2008, Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry, Adv Water Resour, 31, 74, 10.1016/j.advwatres.2007.06.003 Carman, 1937, Fluid flow through granular beds, TI Chem Eng Lond, 15, 150 Tomadakis, 2005, Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results, J Compos Mater, 39, 163, 10.1177/0021998305046438 Gebart, 1992, Permeability of unidirectional reinforcements for RTM, J Compos Mater, 26, 1100, 10.1177/002199839202600802 Walsh, 1984, The effect of pressure on porosity and the transport properties of rock, J Geophys Res, 89, 9425, 10.1029/JB089iB11p09425 Mavko, 1997, The effect of a percolation threshold in the Kozeny–Carman relation, Geophysics, 62, 1480, 10.1190/1.1444251 Bayles, 1989, Fractal mathematics applied to flow in porous systems, Part Part Syst Char, 6, 168, 10.1002/ppsc.19890060128 Pape, 2000, Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore space model, Pure Appl Geophys, 157, 603, 10.1007/PL00001110 Bourbié, 1987 Panda, 1994, Estimation of single-phase permeability from parameters of particle-size distribution, AAPG Bull, 78, 1028 Koponen, 1997, Permeability and effective porosity of porous media, Phys Rev E, 56, 3319, 10.1103/PhysRevE.56.3319 Fishman, 2010, Microscale tomography investigations of heterogeneous porosity distributions of PEMFC GDLs, J Electrochem Soc, 157, B1643, 10.1149/1.3481443 Kuo, 2011, Simulation studies of effect of flow rate and small scale heterogeneity on multiphase flow of CO2 and brine, Energy Procedia, 4, 4516, 10.1016/j.egypro.2011.02.408 Pan, 2006, An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Comput Fluids, 35, 898, 10.1016/j.compfluid.2005.03.008 Schneider, 2005, Numerical simulation of the transient flow behaviour in chemical reactors using a penalisation method, Comput Fluids, 34, 1223, 10.1016/j.compfluid.2004.09.006 Hamidi, 2008, Modeling of 2D density-dependent flow and transport in porous media using finite volume method, Comput Fluids, 37, 1047, 10.1016/j.compfluid.2007.10.009 Jaffre, 1980, Approximation of a diffusion–convection equation by a mixed finite element method: application to the water flooding problem, Comput Fluids, 8, 177, 10.1016/0045-7930(80)90009-2 Axner, 2007 Chen, 2003, Lattice Boltzmann method for fluid flows, Annu Rev Fluid Mech, 30, 329, 10.1146/annurev.fluid.30.1.329 Ahrenholz, 2006, Lattice-Boltzmann simulations in reconstructed parameterized porous media, Int J Comput Fluid D, 20, 369, 10.1080/10618560601024694 Ahrenholz, 2011, Pore-scale determination of parameters for macroscale modeling of evaporation processes in porous media, Water Resour Res, 47, W07543, 10.1029/2010WR009519 Tölke, 2002, Lattice Boltzmann simulations of binary fluid flow through porous media, Philos Trans Roy Soc Lond. Ser A: Math, Phys Eng Sci, 360, 535, 10.1098/rsta.2001.0944 Yablecki, 2012, Effect of liquid water presence on PEMFC GDL effective thermal conductivity, J Electrochem Soc, 159, F805, 10.1149/2.014212jes Yablecki, 2012, Modeling the effective thermal conductivity of an anisotropic gas diffusion layer in a polymer electrolyte membrane fuel cell, J Electrochem Soc, 159, B647, 10.1149/2.013206jes Sukop, 2003, Invasion percolation of single component, multiphase fluids with lattice Boltzmann models, Phys B: Condens Matter, 338, 298, 10.1016/j.physb.2003.08.009 Yan, 2010, LBM, a useful tool for mesoscale modelling of single-phase and multiphase flow, Appl Therm Eng Gokaltun S, McDaniel D. Multiple-relaxation-time lattice Boltzmann method for multiphase flows with high density and viscosity ratios. In: WM2010 Conference, Phoenix, AZ, USA; 2010. Huang, 2010, Evaluation of three lattice Boltzmann models for multiphase flows in porous media, Comput. Math. Appl. Guta, 2010, Navier–Stokes–Brinkman system for interaction of viscous waves with a submerged porous structure, Tamkang J Math, 41, 217, 10.5556/j.tkjm.41.2010.722 Hasimoto, 1959, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres, J Fluid Mech, 5, 317, 10.1017/S0022112059000222 Sangani, 1982, Slow flow through a periodic array of spheres, Int J Multiphase Flow, 8, 343, 10.1016/0301-9322(82)90047-7 Succi S. The lattice Boltzmann equation for fluid dynamics and beyond. UK, Oxford: Clarendon Press; 2001. Shardt, 2012, Lattice Boltzmann simulations of pinched flow fractionation, Chem Eng Sci, 75, 106, 10.1016/j.ces.2012.03.013 Reider, 1995, Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier–Stokes equations, Comput Fluids, 24, 459, 10.1016/0045-7930(94)00037-Y Bhatnagar, 1954, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys Rev, 94, 511, 10.1103/PhysRev.94.511 Guo, 2000, Lattice BGK model for incompressible Navier–Stokes equation, J Comput Phys, 165, 288, 10.1006/jcph.2000.6616 Qian, 1992, Lattice BGK models for Navier–Stokes equation, Europhys Lett, 17, 479, 10.1209/0295-5075/17/6/001 Latt, 2008, Straight velocity boundaries in the lattice Boltzmann method, Phys Rev E, 77, 056703, 10.1103/PhysRevE.77.056703 Dullien, 1988, Two-phase flow in porous media, Chem Eng Technol, 11, 407, 10.1002/ceat.270110153 Nabovati, 2010, Through-thickness permeability prediction of three-dimensional multifilament woven fabrics, Compos Part A: Appl Sci Manuf, 41, 453, 10.1016/j.compositesa.2009.11.011 Kang, 2010, Pore-scale modeling of reactive transport involved in geologic CO2 sequestration, Transp Porous Med, 82, 197, 10.1007/s11242-009-9443-9 Kumar A, Noh M, Pope G, Sepehrnoori K, Bryant S, Lake L. Reservoir simulation of CO2 storage in deep saline aquifers. In: SPE/DOE symposium on improved oil recovery, Tusla, Oklahoma, USA; 2004. Ziegler, 1993, Boundary conditions for lattice Boltzmann simulations, J Stat Phys, 71, 1171, 10.1007/BF01049965 Ginzbourg, 1994, Boundary flow condition analysis for the three-dimensional lattice Boltzmann model, J Phys II, 4, 191, 10.1051/jp2:1994123 d’Humières, 2009, Viscosity independent numerical errors for Lattice Boltzmann models: from recurrence equations to “magic” collision numbers, Comput Math Appl, 58, 823, 10.1016/j.camwa.2009.02.008 Koponen, 1996, Tortuous flow in porous media, Phys Rev E, 54, 406, 10.1103/PhysRevE.54.406 Nabovati, 2007, Fluid flow simulation in random porous media at pore-level using the lattice Boltzmann method, JESTEC, 2, 226 Adler, 1992 Davies, 2000, Theoretical and experimental values for the parameter k of the Kozeny–Carman equation, as applied to sedimenting suspensions, J Phys D, 13, 2013, 10.1088/0022-3727/13/11/012 Kyan, 1970, Flow of single-phase fluids through fibrous beds, Ind Eng Chem Fundam, 9, 596, 10.1021/i160036a012 Happel, 1983 Lasdon L, Waren A. Generalized reduced gradient software for linearly and nonlinearly constrained problems. Austin, Texas, USA: Graduate School of Business, University of Texas; 1977. Kozeny, 1927, Ueber kapillare Leitung des Wassers im Boden, Stizungsber Akad Wiss Wien, 136, 271 Kaviany, 1995