Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function?

Computational Economics - Tập 29 Số 3 - Trang 355-367 - 2007
van Binsbergen, Jules H.1, Brandt, Michael W.1,2
1School of Business, Duke University, Durham, USA
2NBER, Cambridge, USA

Tóm tắt

Most dynamic programming methods deployed in the portfolio choice literature involve recursions on an approximated value function. The simulation-based method proposed recently by Brandt, Goyal, Santa-Clara, and Stroud (Review of Financial Studies, 18, 831–873, 2005), relies instead on recursive uses of approximated optimal portfolio weights. We examine the relative numerical performance of these two approaches. We show that when portfolio weights are constrained by short sale restrictions for example, iterating on optimized portfolio weights leads to superior results. Value function iterations result in a lower variance but disproportionately higher bias of the solution, especially when risk aversion is high and the investment horizon is long.

Tài liệu tham khảo

citation_journal_title=Journal of Financial Economics; citation_title=Transaction costs and predictability: some utility cost calculations; citation_author=P. Balduzzi, A.W. Lynch; citation_volume=52; citation_publication_date=1999; citation_pages=47-78; citation_doi=10.1016/S0304-405X(99)00004-5; citation_id=CR1 citation_journal_title=Journal of Finance; citation_title=Investing for the long run when returns are predictable; citation_author=N. Barberis; citation_volume=55; citation_publication_date=2000; citation_pages=225-264; citation_doi=10.1111/0022-1082.00205; citation_id=CR2 van Binsbergen, J.H., Brandt, M.W. (2006) Optimal asset allocation in asset liability management. Working Paper, Duke University. Brandt, M. W. (2005). Portfolio choice problems. In Y. Ait-Sahalia, & L. P. Hansen, (Eds.), Handbook of Financial Econometrics, forthcoming. citation_journal_title=Review of Financial Studies; citation_title=A simulation approach to dynamic portfolio choice with an application to learning about return predictability; citation_author=M.W. Brandt, A. Goyal, P. Santa-Clara, J.R. Stroud; citation_volume=18; citation_publication_date=2005; citation_pages=831-873; citation_doi=10.1093/rfs/hhi019; citation_id=CR5 citation_journal_title=American Economic Review; citation_title=The sensitivity of tests of the intertemporal allocation of consumption to near-rational alternatives; citation_author=J.H. Cochrane; citation_volume=79; citation_publication_date=1989; citation_pages=319-337; citation_id=CR6 citation_journal_title=Review of Financial Studies; citation_title=Optimal consumption and investment with capital gains taxes; citation_author=R.M. Dammon, C.S. Spatt, H.H. Zhang; citation_volume=14; citation_publication_date=2001; citation_pages=583-616; citation_doi=10.1093/rfs/14.3.583; citation_id=CR7 citation_journal_title=Econometrica; citation_title=A simple, positive definite, heteroskedasticity and autocorrelation consistent covariance matrix; citation_author=W.K. Newey, K.D. West; citation_volume=55; citation_publication_date=1987; citation_pages=703-708; citation_doi=10.2307/1913610; citation_id=CR8