Effect of a thymol application on olfactory memory and gene expression levels in the brain of the honeybee Apis mellifera

Springer Science and Business Media LLC - Tập 22 - Trang 8022-8030 - 2014
Elsa Bonnafé1, Florian Drouard2, Lucie Hotier2, Jean-Luc Carayon1, Pierre Marty3, Michel Treilhou1, Catherine Armengaud2
1VAcBio Group, EA 4357, Champollion University Center, Albi Cedex 09, France
2Research Center for Animal Cognition, CNRS-UMR 5169, Paul Sabatier University, Toulouse Cedex 91, France
3GEODE, CNRS-UMR 5602, Champollion University Center, Albi Cedex 09, France

Tóm tắt

Essential oils are used by beekeepers to control the Varroa mites that infest honeybee colonies. So, bees can be exposed to thymol formulations in the hive. The effects of the monoterpenoid thymol were explored on olfactory memory and gene expression in the brain of the honeybee. In bees previously exposed to thymol (10 or 100 ng/bee), the specificity of the response to the conditioned stimulus (CS) was lost 24 h after learning. Besides, the octopamine receptor OA1 gene Amoa1 showed a significant decrease of expression 3 h after exposure with 10 or 100 ng/bee of thymol. With the same doses, expression of Rdl gene, coding for a GABA receptor subunit, was not significantly modified but the trpl gene was upregulated 1 and 24 h after exposure to thymol. These data indicated that the genes coding for the cellular targets of thymol could be rapidly regulated after exposure to this molecule. Memory and sensory processes should be investigated in bees after chronic exposure in the hive to thymol-based preparations.

Tài liệu tham khảo

Aliouane Y, Kacimi El Hassani A, Gary V, Armengaud C, Lambin M, Gauthier M (2009) Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior. Environ Toxicol Chem 28:113–122. doi:10.1897/08-110.1 Bergougnoux M, Treilhou M, Armengaud C (2013) Exposure to thymol decreased phototactic behaviour in the honeybee (Apis mellifera) in laboratory conditions. Apidologie 44:82–89. doi:10.1007/s13592-012-0158-5 Bernadou A, Démares F, Couret-Fauvel T, Sandoz JC, Gauthier M (2009) Effect of fipronil on side-specific antennal tactile learning in the honeybee. J Insect Physiol 55:1099–1106. doi:10.1016/j.jinsphys.2009.08.019 Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97(2):107–119 Blenau W, Rademacher E, Baumann A (2012) Plant essential oils and formamidines as insecticides/acaricides: what are the molecular targets? Apidologie 43:334–347. doi:10.1007/s13592-011-0108-7 Boncristiani H, Underwood R, Schwarz R, Evans J, Pettis J, van Engelsdorp D (2012) Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J Insect Physiol 58:613–620. doi:10.1016/j.jinsphys.2011.12.011 Boumghar K, Couret-Fauvel T, Garcia M, Armengaud C (2012) Evidence for a role of GABA and glutamate-gated chloride channels in olfactory memory. Pharmacol Biochem Behav 103:69–75 Cronin MA, Lieu MH, Tsunoda S (2006) Two stages of light-dependent TRPL-channel translocation in Drosophila photoreceptors. J Cell Sci 119(Pt 14):2935–2944, Erratum in: J Cell Sci. 2007 May 1;120(Pt 9):1701. PMID:16787936 [PubMed - indexed for MEDLINE] Damiani N, Gende LB, Bailac P, Marcangeli JA, Eguaras MJ (2009) Acaricidal and insecticidal activity of essential oils on Varroa destructor (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae). Parasitol Res 106:145–152. doi:10.1007/s00436-009-1639-y Decourtye A, Devillers J, Genecque E et al (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol 48:242–250. doi:10.1007/s00244-003-0262-7 Dupuis JP, Bazelot M, Barbara GS, Paute S, Gauthier M, Raymond-Delpech V (2010) Homomeric RDL and heteromeric RDL/LCCH3 GABA receptors in the honeybee antennal lobes: two candidates for inhibitory transmission in olfactory processing. J Neurophysiol 103(1):458–468. doi:10.1152/jn.00798.2009 El Hassani AK, Dacher M, Gauthier M, Armengaud C (2005) Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol Biochem Behav 82:30–39. doi:10.1016/j.pbb.2005.07.008 El Hassani AK, Giurfa M, Gauthier M, Armengaud C (2008) Inhibitory neurotransmission and olfactory memory in honeybees. Neurobiol Learn Mem 90:589–595. doi:10.1016/j.nlm.2008.07.018 El Hassani AK, Dupuis JP, Gauthier M, Armengaud C (2009) Glutamatergic and GABAergic effects of fipronil on olfactory learning and memory in the honeybee. Invert Neurosci 9:91–100. doi:10.1007/s10158-009-0092-z Emsen B, Dodologlu A (2011) Efficacy of different organic compounds against bee mite (Varroa destructor Anderson and Truman) in honey bee (Apis mellifera L.) colonies. J Anim Vet Adv 10:802–805. doi:10.3923/javaa.2011.802.805 Farooqui T, Robinson K, Vaessin H, Smith BH (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 23:5370–5380 Farooqui T, Vaessin H, Smith BH (2004) Octopamine receptors in the honeybee (Apis mellifera) brain and their disruption by RNA-mediated interference. J Insect Physiol 50:701–713. doi:10.1016/j.jinsphys.2004.04.014 Galizia CG, Sachse S (2010) Odor coding in insects. In: Menini A (ed) The neurobiology of olfaction. CRC Press, Boca Raton, Chapter 2 Gashout HA, Guzman-Novoa E (2009) Acute toxicity of essential oils and other natural compounds to the parasitic mite, Varroa destructor, and to larval and adult worker honey bees (Apis mellifera L.). J Apic Res 48(4):263–269 Gauthier M, Grünewald B (2012) Neurotransmitter systems in the honey bee brain: functions in learning and memory. In: Galizia CG, Eisenhardt D, Giurfa M (eds) Honeybee neurobiology and behavior. Springer, Dordrecht, pp 155–169. doi:10.1007/978-94-007-2099-2_13 Gerber B, Wüstenberg D, Schütz A, Menzel R (1998) Temporal determinants of olfactory long-term retention in honeybee classical conditioning: nonmonotonous effects of the training trial interval. Neurobiol Learn Mem 69:71–78. doi:10.1006/nlme.1997.3801 Grohmann L, Blenau W, Erber J, Ebert PR, Strünker T, Baumann A (2003) Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J Neurochem 86(3):725–735 Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366:59–63 Henry M, Béguin M, Requier F et al (2012) A common pesticide decreases foraging success and survival in honey bees. Science (New York, NY) 336:348–350. doi:10.1126/science.1215039 Hosler JS, Buxton KL, Smith BH (2000) Impairment of olfactory discrimination by blockade of GABA and nitric oxide activity in the honey bee antennal lobes. Behav Neurosci 114(3):514–525 Imdorf A, Kilchenmann V, Bogdanov S et al (1995) Toxic effects of thymol, camphor, menthol and eucalyptol on Varroa jacobsoni Oud and Apis mellifera L in a laboratory test. Apidologie 26:27–31. doi:10.1051/apido:19950104 Kucharski R, Maleszka R (2005) Microarray and real-time PCR analyses of gene expression in the honeybee brain following caffeine treatment. J Mol Neurosci 27:269–276. doi:10.1385/JMN Leung HT, Shino S, Kim E (2012) The regulations of Drosophila phototransduction. J Neurogenet 26(2):144–150. doi:10.3109/01677063.2011.650253 Liu X, Krause WC, Davis RL (2007) GABAA receptor RDL inhibits Drosophila olfactory associative learning. Neuron 56(6):1090–1102 Liu X, Buchanan ME, Han KA, Davis RL (2009) The GABAA receptor RDL suppresses the conditioned stimulus pathway for olfactory learning. J Neurosci 29(5):1573–1579. doi:10.1523/JNEUROSCI.4763-08.2009 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, Calif) 25:402–408. doi:10.1006/meth.2001.1262 McQuillan HJ, Barron AB, Mercer AR (2012) Age-behaviour-related changes in the expression of biogenic amine receptor genes in the antennae of honey bees (Apis mellifera). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198(10):753–761 Mondet F, Goodwin M, Mercer A (2011) Age-related changes in the behavioural response of honeybees to Apiguard®, a thymol-based treatment used to control the mite Varroa destructor. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197:1055–1062. doi:10.1007/s00359-011-0666-1 Parnas M, Peters M, Dadon D et al (2009) Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium 45:300–309. doi:10.1016/j.ceca.2008.11.009 Parsons PA (1975) Phototactic responses along a gradient of light intensities for the sibling species Drosophila melanogaster and Drosophila simulans. Beh Genet 5:17–25 Priestley CM, Williamson EM, Wafford KA, Sattelle DB (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA(A) receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol 140:1363–1372. doi:10.1038/sj.bjp.0705542 Ratnieks FLW, Carreck NL (2010) Ecology. Clarity on honey bee collapse? Science (New York, NY) 327:152–153. doi:10.1126/science.1185563 Rien D, Kern R, Kurtz R (2012) Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons. Eur J Neurosci 36(8):3030–3039. doi:10.1111/j.1460-9568.2012.08216.x Sinakevitch I, Mustard JA, Smith BH (2011) Distribution of the octopamine receptor AmOA1 in the honey bee brain. PLoS One 6(1):e14536 Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390(6655):70–74 Xu XZ, Li HS, Guggino WB, Montell C (1997) Coassembly of TRP and TRPL produces a distinct store-operated conductance. Cell 89:1155–1164 Xu XZ, Chien F, Butler A, Salkoff L, Montell C (2000) TRPgamma, a drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron 26:647–657 Zhang YV, Raghuwanshi RP, Shen WL, Montell C (2013) Food experience-induced taste desensitization modulated by the Drosophila TRPL channel. Nat Neurosci 16(10):1468–1476. doi:10.1038/nn.3513