Predicting differential habitat suitability of Rhodomyrtus tomentosa under current and future climate scenarios in China

Forest Ecology and Management - Tập 501 - Trang 119696 - 2021
Chunping Xie1, Boyang Huang2, C.Y. Jim3, Weidong Han1, Dawei Liu4
1College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
2College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
3Department of Social Sciences, Education University of Hong Kong, Tai Po, Hong Kong, China
4Nanjing Forest Police College, Nanjing 210023, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abd Hamid, 2017, Rhodomyrtus tomentosa: a phytochemical and pharmacological review, Asian J. Pharm. Clin. Res., 10, 10, 10.22159/ajpcr.2017.v10i1.12773

Abolmaali, 2018, MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran, Ecol. Inf., 43, 116, 10.1016/j.ecoinf.2017.10.002

Bazzato, 2021, High spatial resolution bioclimatic variables to support ecological modelling in a Mediterranean biodiversity hotspot, Ecol. Model., 441, 109354, 10.1016/j.ecolmodel.2020.109354

Blois, 2013, Climate change and the past, present, and future of biotic interactions, Science, 341, 499, 10.1126/science.1237184

Bohl, 2019, A new null model approach to quantify performance and significance for ecological niche models of species distributions, J. Biogeogr., 46, 1101, 10.1111/jbi.13573

Bouahmed, 2019, Modeling Cedrus atlantica potential distribution in North Africa across time: new putative glacial refugia and future range shifts under climate change, Reg. Environ. Change, 19, 1667, 10.1007/s10113-019-01503-w

Cetin, 2018, Mapping of bioclimatic comfort for potential planning using GIS in Aydin, Environ. Dev. Sustainability, 20, 361, 10.1007/s10668-016-9885-5

Chen, 2007, Research and development of Rhodomyrtus tomentosa, Guangdong Agric. Sci., 109

Chen, 2018, Climatic conditions and prospects for artificial cultivation of myrtle, Jiangxi Agric., 16, 47

Çoban, 2020, MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani Olivier, Sustainability, 12, 2671, 10.3390/su12072671

Deb, 2017, The impact of climate change on the distribution of two threatened Dipterocarp trees, Ecol. Evol., 7, 2238, 10.1002/ece3.2846

Deblauwe, 2016, Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics, Global Ecol. Biogeogr., 25, 443, 10.1111/geb.12426

Dyderski, 2018, How much does climate change threaten European forest tree species distributions?, Global Change Biol., 24, 1150, 10.1111/gcb.13925

Elith, 2009, Species distribution models: ecological explanation and prediction across space and time, Annu. Rev. Ecol. Evol. Syst., 40, 677, 10.1146/annurev.ecolsys.110308.120159

Elith, 2011, A statistical explanation of MaxEnt for ecologists, Divers. Distrib., 17, 43, 10.1111/j.1472-4642.2010.00725.x

Elsen, 2020, Topography and human pressure in mountain ranges alter expected species responses to climate change, Nat. Commun., 11, 1974, 10.1038/s41467-020-15881-x

Flores-Tolentino, 2019, Ecological niche models as a tool for estimating the distribution of plant communities, Revista mexicana de biodiversidad, 90, e902829, 10.22201/ib.20078706e.2019.90.2829

Fois, 2018, Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions, Ecol. Model., 385, 124, 10.1016/j.ecolmodel.2018.07.018

Frohlich, D., 2012. Rhodomyrtus tomentosa (Downy rose-myrtle). In: Invasive Species Compendium. Commonwealth Agricultural Bureaux International (CABI), Wallingford, UK.

Gaikwad, 2011, Ecological niche modeling of customary medicinal plant species used by Australian Aborigines to identify species-rich and culturally valuable areas for conservation, Ecol. Model., 222, 3437, 10.1016/j.ecolmodel.2011.07.005

Gebrewahid, 2020, Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia, Ecological Processes, 9, 6, 10.1186/s13717-019-0210-8

Graham, 2003, Confronting multicollinearity in ecological multiple regression, Ecology, 84, 2809, 10.1890/02-3114

Guillera-Arroita, 2015, Is my species distribution model fit for purpose? Matching data and models to applications, Global Ecol. Biogeogr., 24, 276, 10.1111/geb.12268

Haidarian Aghakhani, 2017, Predicting the impacts of climate change on Persian oak (Quercus brantii) using Species Distribution Modelling in Central Zagros for conservation planning, J. Environ. Stud., 43, 497

Hammer, 2001, PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electronica, 4, 9

Hijmans, 2005, Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965, 10.1002/joc.1276

Huang, 2021, Prediction of suitable distribution area of the endangered plant Acer catalpifolium under the background of climate change in China, J. Beijing Forestry Univ., 43, 33

Hundessa, 2018, Projecting environmental suitable areas for malaria transmission in China under climate change scenarios, Environ. Res., 162, 203, 10.1016/j.envres.2017.12.021

IPCC, 2019, Climate change and land: Summary for policymakers

Kamyo, 2020, Modeling habitat suitability of Dipterocarpus alatus (Dipterocarpaceae) using MaxEnt along the Chao Phraya River in Central Thailand, Forest Sci. Technol., 16, 1, 10.1080/21580103.2019.1687108

Kong, 2021, Assessing the impact of climate change on the distribution of Osmanthus fragrans using Maxent, Environ. Sci. Pollut. Res., 34655, 10.1007/s11356-021-13121-3

Lenoir, 2008, A significant upward shift in plant species optimum elevation during the 20th Century, Science, 320, 1768, 10.1126/science.1156831

Li, 2020, Optimized maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China, Forests, 11, 302, 10.3390/f11030302

Liang, 2013, Seed germination of Rhodomyrtus tomentosa, Seed Sci. Technol., 41, 188, 10.15258/sst.2013.41.2.02

Liu, 2013, Propagation and Cultivation of Rhodomyrtus tomentosa, Guangdong Forestry Sci. Technol., 29, 49

Liu, 2013, Testing the stress-gradient hypothesis during the restoration of tropical degraded land using the shrub Rhodomyrtus tomentosa as a nurse plant, Restor. Ecol., 21, 578, 10.1111/j.1526-100X.2012.00937.x

Manabe, 2019, Role of greenhouse gas in climate change, Tellus A: Dynamic Meteorol. Oceanography, 71, 1620078, 10.1080/16000870.2019.1620078

McKenney, 2007, Potential impacts of climate change on the distribution of North American trees, Bioscience, 57, 939, 10.1641/B571106

Mikhaylov, 2020, Global climate change and greenhouse effect, Entrepreneurship Sustainab. Issues, 7, 2897, 10.9770/jesi.2020.7.4(21)

Mutaqin, 2020, Ethnobotany of suweg (Amorphophallus paeoniifolius): Folk classification, habitat, and traditional conservation in Cisoka Village, Majalengka District, Cimanuk Watershed Region, Indonesia, Biodiversitas J. Biol. Diversity, 21, 546, 10.13057/biodiv/d210861

Navarro Cerrillo, 2021, Can habitat prediction models contribute to the restoration and conservation of the threatened tree Abies pinsapo Boiss. in Southern Spain?, New Forest., 52, 89, 10.1007/s11056-020-09784-4

Ni, 2011, Impacts of climate change on Chinese ecosystems: key vulnerable regions and potential thresholds, Reg. Environ. Change, 11, 49, 10.1007/s10113-010-0170-0

Ning, 2021, Predicting the future redistribution of Chinese white pine Pinus armandii Franch. Under climate change scenarios in China using species distribution models, Global Ecol. Conserv., 25, e01420, 10.1016/j.gecco.2020.e01420

Nori, 2019, On the environmental background of aquatic organisms for ecological niche modeling: a call for caution, Aquat. Ecol., 53, 595, 10.1007/s10452-019-09711-6

Nugroho, 2019, Anatomical structure, flavonoid content, and antioxidant activity of Rhodomyrtus tomentosa leaves and fruits on different age and maturity level, Biodiversitas J. Biol. Diversity, 20, 3619

Oyebanji, 2021, Impact of climate change on the spatial distribution of endemic legume species of the Guineo-Congolian forest, Africa. Ecol. Indicators, 122, 107282, 10.1016/j.ecolind.2020.107282

Passioura, 1991, Soil structure and plant growth, Aust. J. Soil Res., 29, 717, 10.1071/SR9910717

Paź-Dyderska, 2021, Possible changes in spatial distribution of walnut (Juglans regia L.) in Europe under warming climate, Reg. Environ. Change, 21, 18, 10.1007/s10113-020-01745-z

Peterson, 2012, Species distribution modeling and ecological niche modeling: getting the concepts right, Natureza & Conservação, 10, 102, 10.4322/natcon.2012.019

Phillips, 2006, Maximum entropy modeling of species geographic distributions, Ecol. Model., 190, 231, 10.1016/j.ecolmodel.2005.03.026

Phillips, S.J., Dudík, M., Schapire, R.E., 2021. Maxent software for modeling species niches and distributions (Version 3.4.1). In: American Museum of Natural History, New York.

Puchałka, 2021, Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate, Global Change Biol., 27, 1587, 10.1111/gcb.15486

QGIS, O., 2021. QGIS Geographic Information System (Version 3.20). In: QGIS Association, Open Source Geospatial Foundation Project.

Qin, 2017, Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China, Global Ecol. Conserv., 10, 139, 10.1016/j.gecco.2017.02.004

Qiu, 1984, Some problems on the division of the sub-tropical belt in china, Geographical Res., 3, 66

Rodríguez, 2007, The application of predictive modelling of species distribution to biodiversity conservation, Divers. Distrib., 13, 243, 10.1111/j.1472-4642.2007.00356.x

Rovzar, 2016, Landscape to site variations in species distribution models for endangered plants, For. Ecol. Manage., 369, 20, 10.1016/j.foreco.2016.03.030

Sarkar, 2009, Systematic conservation assessment for the Mesoamerica, Chocó, and Tropical Andes biodiversity hotspots: a preliminary analysis, Biodivers. Conserv., 18, 1793, 10.1007/s10531-008-9559-1

Schwartz, 2012, Using niche models with climate projections to inform conservation management decisions, Biol. Conserv., 155, 149, 10.1016/j.biocon.2012.06.011

Semenov, 2010, Use of multi-model ensembles from global climate models for assessment of climate change impacts, Clim. Res., 41, 1, 10.3354/cr00836

Si, 2012, Determination of northern distribution boundary and relationship with climate parameters for Rhodomyrtus tomentosa in China, J. Central South Univ. Forestry Technol., 32, 162

Soil Survey Staff, 2010. Keys to soil taxonomy (11th Edtion). United States Department of Agriculture, Natural Resources Conservation Service, Washington DC.

Sousa-Guedes, 2020, Ecological niche models reveal climate change effect on biogeographical regions: the Iberian Peninsula as a case study, Climate, 8, 42, 10.3390/cli8030042

Su, 2021, Ecological networks in response to climate change and the human footprint in the Yangtze River Delta urban agglomeration, China. Landscape Ecol., 36, 2095, 10.1007/s10980-020-01129-y

Swart, 2018, Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion, Nat. Geosci., 11, 836, 10.1038/s41561-018-0226-1

Swets, 1988, Measuring the accuracy of diagnostic systems, Science, 240, 1285, 10.1126/science.3287615

Tessarolo, 2021, High uncertainty in the effects of data characteristics on the performance of species distribution models, Ecol. Indicators, 121, 107147, 10.1016/j.ecolind.2020.107147

Testolin, 2020, Global distribution and bioclimatic characterization of alpine biomes, Ecography, 43, 779, 10.1111/ecog.05012

Varol, 2021, Impacts of climate change scenarios on European ash tree (Fraxinus excelsior L.) in Turkey, For. Ecol. Manage., 491, 119199, 10.1016/j.foreco.2021.119199

Vo, 2019, The health beneficial properties of Rhodomyrtus tomentosa as potential functional food, Biomolecules, 9, 76, 10.3390/biom9020076

Wang, 2018, Geographical distribution pattern of species diversity of the genus Populus L. in China, Acta Ecol. Sinica, 38, 282

Wang, 2021, Habitat suitability assessment of endangered plant Alsophila spinulosa in Chishui River area based on GIS and Maxent model, Acta Ecol. Sinica, 41, 1

Wang, 2021, Phylogeny of Myrtales and related groups based on chloroplast genome, Guihaia, 41, 68

Wang, 2020, Germplasm status and utilization value of wild Rhodomyrtus tomentosa in Hainan, J. Anhui Agric. Sci., 48, 32

Wei, 2018, Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China, Global Ecol. Conserv., 16, e00477, 10.1016/j.gecco.2018.e00477

Wei, 2009, Reproductive ecology of Rhodomyrtus tomentosa (Myrtaceae), Nord. J. Bot., 27, 154, 10.1111/j.1756-1051.2009.00137.x

Xie, 2021, Bioclimatic suitability of actual and potential cultivation areas for Jacaranda mimosifolia in Chinese cities, Forests, 12, 951, 10.3390/f12070951

Yan, 2020, Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt, Global Ecol. Conserv., 21, e00856, 10.1016/j.gecco.2019.e00856

Yang, 2020, Global potential suitable area and ecological characteristics of Moringa oleifera, J. Beijing Forestry Univ., 42, 45

Yang, 2010, The shrub Rhodomyrtus tomentosa acts as a nurse plant for seedlings differing in shade tolerance in degraded land of South China, J. Veg. Sci., 21, 262, 10.1111/j.1654-1103.2009.01140.x

Yang, 2013, Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills, Ecol. Eng., 51, 83, 10.1016/j.ecoleng.2012.12.004

Ye, 2019, Study on the anatomical structure of Rhodomyrtus tomentosa leaf blade and its ecological adaptability, J. Anhui Agric. Sci., 47, 1

Ye, 2015, Development and utilization of Rhodomyrtus tomentosa and its cultivation management techniques, Chinese J. Tropical Agric., 35, 22

Yi, 2016, Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China, Ecol. Eng., 92, 260, 10.1016/j.ecoleng.2016.04.010

Yilmaz, 2017, Determining the factors affecting the distribution of Muscari latifolium, an endemic plant of Turkey, and a mapping species distribution model, Ecol. Evol., 7, 1112, 10.1002/ece3.2766

Zhang, 2019, Predicting the potential distribution of Paeonia veitchii (Paeoniaceae) in China by incorporating climate change into a Maxent model, Forests, 10, 190, 10.3390/f10020190

Zhao, 2020, Climatic suitable area analysis and response to climate change of Actinidia arguta in China, Chinese J. Eco-Agric., 28, 1523

Zhao, 2006, Resource utilization and manual Breeding of Rhodomyrtus tomentosa, Guangxi Forestry Sci., 35, 70

Zhao, 2020, Rhodomyrtus tomentosa (Aiton.): A review of phytochemistry, pharmacology and industrial applications research progress, Food Chem., 309, 125715, 10.1016/j.foodchem.2019.125715