Wind influence on a coastal buoyant outflow

American Geophysical Union (AGU) - Tập 110 Số C3 - 2005
Michael M. Whitney1, Richard W. Garvine1
1College of Marine Studies University of Delaware Newark Delaware USA

Tóm tắt

This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy‐driven coastal current. Downwelling favorable winds augment this down‐shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy‐driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along‐shelf flow is in a wind‐driven or buoyancy‐driven state. Ws is the ratio of the wind‐driven and buoyancy‐driven along‐shelf velocities. Wind influence on across‐shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind‐driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high–river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy‐driven most of the time (∣Ws∣ < 1 on average). Wind events, however, overwhelm the buoyancy‐driven flow (∣Ws∣ > 1) several times during the high‐discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across‐shelf plume structure is more sensitive to wind influence than the along‐shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.

Từ khóa


Tài liệu tham khảo

Avicola G.(2003) The impact of bathymetry geometry and ambient currents on the dynamics of coastal buoyant outflows Ph.D. dissertation 300 pp. Univ. of Del. Newark.

10.1175/1520-0485(2002)032<3233:SAFTIB>2.0.CO;2

10.1029/JC090iC02p03225

10.1029/JC088iC08p04730

10.1175/1520-0485(1989)019<0098:AOMABI>2.0.CO;2

10.1016/0278-4343(94)90026-4

10.1029/JC088iC08p04579

10.1029/CO004p0001

Blumberg A. F. andG. L.Mellor(1995) A primer for ECOM technical report 84 pp. HydroQual Inc. Mahwah N. J.

Boicourt W. C.(1973) The circulation of water on the continental shelf from Chesapeake Bay to Cape Hatteras Ph.D. dissertation 183 pp. Johns Hopkins Univ. Baltimore Md.

10.1007/978-3-642-66987-3_10

Bue C. D.(1968) Monthly surface‐water inflow to Chesapeake Bay open file report U.S. Geol. Surv. Reston Va.

10.1175/1520-0485(1988)018<1144:WDMOEP>2.0.CO;2

10.1175/1520-0485(1994)024<1464:TOACDF>2.0.CO;2

10.1175/1520-0485(1985)015<0439:TROSFF>2.0.CO;2

10.1175/1520-0485(1978)008<0047:TATW>2.0.CO;2

10.1007/978-94-017-1041-1

10.1006/ecss.2000.0627

Fong D. A.(1998) Dynamics of freshwater plumes: Observations and numerical modeling of the wind‐forced response and alongshore freshwater transport Ph.D. dissertation 172 pp. Mass. Inst. of Technol.–Woods Hole Oceanogr. Inst. Joint Prog. in Oceanogr. Cambridge Mass.

10.1029/2000JC900134

10.1016/S0924-7963(96)00089-9

10.1016/0278-4343(95)00071-2

10.1029/2001JC000932

10.1029/91JC00079

10.1016/0278-4343(94)00065-U

10.1357/002224001762882637

10.1029/2000JC000698

10.1029/97JC03290

10.1006/ecss.1996.0198

Horner A. R. D. A.Fong J. R.Koseff T.Maxworthy andS. G.Monismith(2000) The control of coastal current transport paper presented at5th International Symposium on Stratified Flows Int. Assoc. of Hydraul. Res. Vancouver Canada.

10.1029/95JC03024

10.1175/1520-0485(1994)024<2461:CDOTNC>2.0.CO;2

10.1029/95RG00177

10.1017/S0022112002008868

10.1029/1999JC900101

10.1029/JC095iC09p16097

10.1029/RG020i004p00851

10.1029/JC093iC06p06885

10.1175/1520-0485(1986)016<0934:TFNRTF>2.0.CO;2

Moran M. A., 1985, The Hudson River Ecosystem, 6

10.1029/93JC02112

10.1357/0022240933223747

10.1016/S0377-0265(02)00028-3

10.1175/1520-0485(1993)023<0164:SVOEOP>2.0.CO;2

Royer T. C., 1981, Baroclinic transport in the Gulf of Alaska: Part II. A fresh water driven coastal current, J. Mar. Res., 39, 251

10.1029/JC087iC03p02017

10.1007/978-1-4615-6648-9_2

10.1029/2001JC000802

10.1029/JC085iC01p00461

10.1016/0079-6611(90)90002-J

10.1098/rsta.1981.0181

10.1016/S0924-7963(96)00085-1

10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

Whitney M. M.(2003) Simulating the Delaware Coastal Current Ph.D. dissertation 284 pp. Univ. of Del. Newark.

10.1175/1520-0485(1979)009<0218:ACOSSW>2.0.CO;2

10.1016/S0278-4343(98)00107-1

10.1016/S0278-4343(99)00025-4

10.1175/1520-0485(1997)027<1386:ASTFTF>2.0.CO;2

10.1029/2001JC000792