Vines--a new graphical model for dependent random variables
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] ARNOLD, B. C., CASTILLO, E. and SARABIA, J. M. (1999). Conditional Specification of Statistical Models. Springer, New York.
[2] COOKE, R. M. (1995). UNICORN: Methods and Code for Uncertainty Analy sis. Atomic Energy Association, Delft Univ. Technology.
[3] COOKE, R. M. (1997). Markov and entropy properties of treeand vine-dependent variables. Proc. ASA Section on Bayesian Statistical Science 166-175. Amer. Statist. Assoc., Alexandria, VA.
[4] COOKE, R. M., KEANE, M. S. and MEEUWISSEN, A. M. H. (1990). User's manual for RIAN: Computerized risk assessment. Estec 1233, Delft Univ. Technology.
[5] COOKE, R. M., MEEUWISSEN, A. M. H. and PREy SSL, C. (1991). Modularizing fault tree uncertainty analysis: The treatment of dependent information sources. In Probabilistic Safety Assessment and Management (G. Apostolakis, ed.). North-Holland, Amsterdam.
[6] CUADRAS, C. M. (1992). Probability distributions with given multivariate marginals and given dependence structure. J. Multivariate Anal. 42 51-66.
[7] GENEST, C., QUESADA, M., JOSÉ, J., RODRIGUEZ, L. and JOSÉ, A. (1995). De l'impossibilité de construire des lois à marges multidimensionnelles données à partir de copules. C. R. Acad. Sci. Paris Sér. I Math. 320 723-726.
[8] GUIA ¸SU, S. (1977). Information Theory with Applications. McGraw-Hill, New York.
[9] O'HAGAN, A. (1994). Kendall's Advanced Theory of Statistics 2B. Bayesian Inference. Arnold, London.
[10] IMAN, R. and CONOVER, W. (1982). A distribution-free approach to inducing rank correlation among input variables. Comm. Statist. Simulation Comput. 11 311-334.
[11] IMAN, R., HELTON, J. and CAMPBELL, J. (1981). An approach to sensitivity analysis of computer models. I, II. J. Quality Technology 13 174-183, 232-240.
[12] JAy NES, E. T. (1983). Papers on Probability, Statistics and Statistical physics (R. D. Rosenkrantz, ed.). Reidel, Dordrecht.
[13] JOE, H. (1996). Families of m-variate distributions with given margins and m(m 1)/2 bivariate dependence parameters. In Distributions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer and M. D. Tay lor, eds.) 120-141. IMS, Hay ward, CA.
[15] KENDALL, M. G. and STUART, A. (1967). The Advanced Theory of Statistics 2. Inference and Relationship, 2nd ed. Griffin, London.
[16] KRAAN, B. (2001). Probabilistic inversion in uncertainty analysis. Ph.D. thesis, Delft Univ. Technology.
[18] LI, H., SCARSINI, M. and SHAKED, M. (1996). Linkages: a tool for the construction of multivariate distributions with given non-overlapping multivariate marginals. J. Multivariate Anal. 56 20-41.
[19] LI, H., SCARSINI, M. and SHAKED, M. (1999). Dy namic linkages for multivariate distributions with given non-overlapping multivariate marginals. J. Multivariate Anal. 68 54-77.
[20] MEEUWISSEN, A. M. H. (1993). Dependent random variables in uncertainty analysis. Ph.D. thesis, Delft Univ. Technology.
[21] MEEUWISSEN, A. M. H. and BEDFORD, T. J. (1997). Minimally informative distributions with given rank correlation for use in uncertainty analysis. J. Statist. Comput. Simulation 57 143-175.
[22] MEEUWISSEN, A. M. H. and COOKE, R. M. (1994). Tree dependent random variables. Technical Report 94-28, Dept. Mathematics, Delft Univ. Technology.
[17] KULLBACK, S. (1959). Information Theory and Statistics. Wiley, New York.
[24] OLIVER, R. M. and SMITH, J. Q. (eds.) (1990). Influence Diagrams, Belief Nets and Decision Analy sis. Wiley, Chichester.