Combination of Two Experimental Designs to Optimize the Dimethylphthalate Elimination on Activated Carbon Elaborated from Arundo donax
Tóm tắt
This work aims to apply a combination of fractional factorial design (FFD) and Doehlert design to determine the operational conditions allowing to study the adsorption process applied for dimethylphthalate (DMP) elimination from aqueous solution. The Arundo donax stems plant are used to prepare various activated carbons. The investigated parameters and their levels are impregnation rate (
$$r = 2{-}4$$
), activating agent concentration (
$${C}_{{\mathrm{act}}} = 30{-}50\%$$
), activation time (
$${t}_{{\mathrm{act}}}$$
= 2-4h), carbonization temperature (
$${T}_{\mathrm{carb}} = 300{-}500\,{^{\circ }}\hbox {C}$$
), mixture temperature (
$$T = 25{-}35\,{^{\circ }}\hbox {C}$$
), DMP concentration (
$${C}_{0}= 50{-}100\,\hbox {mg}\,\hbox {L}^{-1})$$
, carbonization time (
$${t}_{{\mathrm{carb}}} = 1{-}2\,\hbox {h}$$
), stirring speed (
$$v = 200{-}400\,\hbox {rpm}$$
) and activated carbon dose (
$${m}_{\mathrm{ad}} = 0.1{-}0.2\,\hbox {g}\,\hbox {L}^{-1})$$
. The FFD is applied for parameters screening. Two responses are defined: the activated carbon production yield (
$$Y_\mathrm{p}$$
) and DMP elimination yield (
$$Y_\mathrm{e}$$
). When both responses are taken into account, according to the p value, the significant factors are (
$$m_\mathrm{ad}$$
), (
$$T_\mathrm{carb}$$
), (
$$C_\mathrm{act}$$
) with a value < 0.0001, and (
$$t_\mathrm{carb}$$
) with a value of 0.0018. These parameters are considered in optimization process. To choose the most appropriate mathematical model, Mallows criterion, corrected Akaike information criterion, Bayesian information criterion, Amemiya Prediction Criterion and ANOVA are applied. This model presents a saddle point, so the optimal conditions are identified at the study field limits for each parameter, so the optimal values are
$${m}_\mathrm{ad} = 0.100 \pm 10^{-3}\,\hbox {g}\,\hbox {L}^{-1}$$
,
$${T}_\mathrm{carb} = 357 \pm 5\, {^{\circ }}\hbox {C}$$
;
$${C}_\mathrm{act} = 47 \pm 5\%$$
;
$$\hbox {tcar} = 0.209 \pm \,0.083\,\hbox {h}$$
. Under these conditions, the removal efficiency exceeds
$$97 \pm 3\%$$
and the BET surface area of activated carbon optimal is
$$1315\,\hbox {m}^{2}\,\hbox {g}^{-1}$$
.
Tài liệu tham khảo
Hanrahan, G.; Lu, K.: Application of factorial and response surface methodology in modern experimental design and optimization. Crit. Rev. Anal. Chem. 36(3–4), 141–151 (2006)
Callao, M.P.: Multivariate experimental design in environmental analysis. TrAC Trends Anal. Chem. 62, 86–92 (2014)
Ferreira, S.L.C.: Statistical designs and response surface techniques for the optimization of chromatographic systems. J. Chromatogr. A 1158(1–2), 2–14 (2007)
Ferreira, C.: Box-Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta 597(2), 179–186 (2007)
Şayan, E.: Optimization and modeling of decolorization and COD reduction of reactive dye solutions by ultrasound-assisted adsorption. Chem. Eng. J. 119(2–3), 175–181 (2006)
Wang, J.-P.; Chen, Y.-Z.; Wang, Y.; Yuan, S.-J.; Yu, H.-Q.: Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology. Water Res. 45(17), 5633–5640 (2011)
Rathinam, A.; Rao, J.R.; Nair, B.U.: Adsorption of phenol onto activated carbon from seaweed: determination of the optimal experimental parameters using factorial design. J. Taiwan Inst. Chem. Eng. 42(6), 952–956 (2011)
Srivastava, V.C.; Mall, I.D.; Mishra, I.M.: Multicomponent adsorption study of metal Ions onto Bagasse fly ash using Taguchi’s design of experimental methodology. Ind. Eng. Chem. Res. 46(17), 5697–5706 (2007)
Özdemir, E.; Duranoğlu, D.; Beker, Ü.; Avcı, A.Ö.: Process optimization for Cr(VI) adsorption onto activated carbons by experimental design. Chem. Eng. J. 172(1), 207–218 (2011)
Muthukumar, M.; Sargunamani, D.; Selvakumar, N.; Venkata Rao, J.: Optimization of ozone treatment for colour and COD removal of acid dye effluent using central composite design experiment. Dyes Pigments 63(2), 127–134 (2004)
Baskan, M.B.; Pala, A.: A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination 254(1–3), 42–48 (2010)
Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H.: Preparation of activated carbon from coconut husk: Optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. J. Hazard. Mater. 153(1–2), 709–717 (2008)
Baçaoui, A.; Yaacoubi, A.; Dahbi, A.; Bennouna, C.; Phan Tan Luu, R.; Maldonado-Hodar, F.J.; Rivera-Utrilla, J.; Moreno-Castilla, C.: Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon 39, 425–432 (2001)
Karacan, F.; Ozden, U.; Karacan, S.: Optimization of manufacturing conditions for activated carbon from Turkish lignite by chemical activation using response surface methodology. Appl. Therm. Eng. 27(7), 1212–1218 (2007)
Ennaciri, K.; Baçaoui, A.; Sergent, M.; Yaacoubi, A.: Application of fractional factorial and Doehlert designs for optimizing the preparation of activated carbons from Argan shells. Chemom. Intell. Lab. Syst. 139, 48–57 (2014)
Chen, Y.-D.; Chen, W.-Q.; Huang, B.; Huang, M.-J.: Process optimization of \(\text{ K }_{2}\text{ C }_{2}\text{ O }_{4}\)-activated carbon from kenaf core using Box-Behnken design. Chem. Eng. Res. Des. 91(9), 1783–1789 (2013)
González, P.G.; Hernández-Quiroz, T.; García-González, L.: The use of experimental design and response surface methodologies for the synthesis of chemically activated carbons produced from bamboo. Fuel Process. Technol. 127, 133–139 (2014)
Tounsadi, H.; Khalidi, A.; Farnane, M.; Abdennouri, M.; Barka, N.: Experimental design for the optimization of preparation conditions of highly efficient activated carbon from Glebionis coronaria L. and heavy metals removal ability. Process Saf. Environ. Prot. 102, 710–723 (2016)
Basheer, A.A.: Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21st century. Chirality 30, 402–406 (2018)
Gupta, V.K.; Ali, I.: Environmental Water: Advances in Treatment, Remediation and Recycling, 1st edn. Elsevier, Amsterdam (2013)
Regti, A.; Laamari, M.R.; Stiriba, S.-E.; El Haddad, M.: Use of response factorial design for process optimization of basic dye adsorption onto activated carbon derived from Persea species. Microchem. J. 130, 129–136 (2017)
Tezcan Un, U.; Ates, F.; Erginel, N.; Ozcan, O.; Oduncu, E.: Adsorption of disperse Orange 30 dye onto activated carbon derived from Holm Oak (Quercus Ilex) acorns: a 3k factorial design and analysis. J. Environ. Manag. 155, 89–96 (2015)
Bahrani, S.; Ghaedi, M.; Mansoorkhani, M.J.K.; Asfaram, A.; Bazrafshan, A.A.; Purkait, M.K.: Ultrasonic assisted dispersive solid-phase microextraction of Eriochrome Cyanine R from water sample on ultrasonically synthesized lead (II) dioxide nanoparticles loaded on activated carbon: Experimental design methodology. Ultrason. Sonochem. 34, 317–324 (2017)
Ali, I.; Jain, C.K.: Advances in arsenic speciation techniques. Int. J. Environ. Anal. Chem. 84, 947–964 (2004)
Ali, I.; Alharbi, O.M.L.; Alothman, Z.A.; Badjah, A.Y.; Alwarthan, A.; Basheer, A.A.: Artificial neural network modelling of amido black dye sorption on iron composite nano material: Kinetics and thermodynamics studies. J. Mol. Liq. 250, 1–8 (2018)
Burakova, E.A.: Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J. Mol. Liq. 253, 340–346 (2018)
Ali, I.; Gupta, V.K.; Khan, T.A.; Asim, M.: Removal of arsenate from aqueous solution electro- coagulation method using Al-Fe electrodes. Int. J. Electrochem. Sci. 7, 10 (2012)
Dehghani, M.H.; Sanaei, D.; Ali, I.; Bhatnagar, A.: Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent : kinetic modeling and isotherm studies. J. Mol. Liq. 215, 671–679 (2016)
Khan, T.A.; Sharma, S.; Ali, I.: Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Magnifera indica) leaf powder: equilibrium, kinetic and thermodynamic studies. J. Toxicol. Environ. Health Sci. 3, 12 (2011)
Ali, I.; Al-Othman, Z.A.; Alwarthan, A.: Molecular uptake of congo red dye from water on iron composite nano particles. J. Mol. Liq. 224, 171–176 (2016)
Ali, I.; Khan, T.A.; Asim, M.: Removal of arsenate from ground-water by electrocoagulation method. Environ. Sci. Pollut. Res. 19, 668–1676 (2011)
Ali, I.; Al-Othman, Z.A.; Alwarthan, A.; Asim, M.; Khan, T.A.: Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ. Sci. Pollut. Res. 21, 3218–3229 (2013)
Ali, I.; Al-Othman, Z.A.; Alwarthan, A.: Supra molecular mechanism of the removal of 17-\(\beta \)-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles. J. Mol. Liq. 241, 123–129 (2017)
Ali, I.; Al-Othman, Z.A.; Alwarthan, A.: Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: kinetic, thermodynamics and mechanism of adsorption. J. Mol. Liq. 236, 205–213 (2017)
Ali, I.; Al-Othman, Z.A.; Alwarthan, A.: Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water. J. Mol. Liq. 221, 1168–1174 (2016)
Ali, I.; Al-Othman, Z.A.; Sanagi, M.M.: Green synthesis of iron nano-impregnated adsorbent for fast removal of fluoride from water. J. Mol. Liq. 211, 457–465 (2015)
Ali, I.; Al-Othman, Z.A.; Al-Warthan, A.: Removal of secbumeton herbicide from water on composite nanoadsorbent. Desalin. Water Treat. 57, 10409–10421 (2015)
Ali, I.; Al-Othman, Z.A.; Al-Warthan, A.: Sorption, kinetics and thermodynamics studies of atrazine herbicide removal from water using iron nano-composite material. Int. J. Environ. Sci. Technol. 13, 733–742 (2015)
Ali, I.; AL-Othman, Z.A.; Alwarthan, A.: Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J. Mol. Liq. 219, 858–864 (2016)
Ali, I.; Al-Othman, Z.A.; Alharbi, O.M.L.: Uptake of pantoprazole drug residue from water using novel synthesized composite iron adsorbent. J. Mol. Liq. 218, 465–472 (2016)
Wang, Z.; Deng, D.; Yang, L.: Degradation of dimethyl phthalate in solutions and soil slurries by persulfate at ambient temperature. J. Hazard. Mater. 271, 202–209 (2014)
Abdeldaiem, M.M.; Rivera-Utrilla, J.; Ocampo-Pérez, R.; Méndez-Díaz, J.D.; Sánchez-Polo, M.: Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies – A review. J. Environ. Manag. 109, 164–178 (2012)
Montgomry, D.C.: Design Analysis of Experiments, 5th edn. Wiley, New York (2001)
Bouchekara, H.R.E.H.; Nahas, M.; Simsim, M.T.: Performance analysis and parametric study of an active magnetic regenerator based on the design of experiments approach. Arab. J. Sci. Eng. 39(4), 3147–3159 (2014)
Cronje, K.J.; Chetty, K.; Carsky, M.; Sahu, J.N.; Meikap, B.C.: Optimization of chromium (VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination 275(1–3), 276–284 (2011)
Isoda, N.; Rodrigues, R.; Silva, A.; Gonçalves, M.; Mandelli, D.; Figueiredo, F.C.A.; Carvalho, W.A.: Optimization of preparation conditions of activated carbon from agriculture waste utilizing factorial design. Powder Technol. 256, 175–181 (2014)
Şayan, E.: Ultrasound-assisted preparation of activated carbon from alkaline impregnated hazelnut shell: an optimization study on removal of \(\text{ Cu }^{2+}\) from aqueous solution. Chem. Eng. J. 115(3), 213–218 (2006)
Benredouane, S.; Berrama, T.; Doufene, N.: Strategy of screening and optimization of process parameters using experimental design: application to amoxicillin elimination by adsorption on activated carbon. Chemom. Intell. Lab. Syst. 155, 128–137 (2016)
Pigatto, G.; Lodi, A.; Finocchio, E.; Palma, M.S.A.; Converti, A.: Chitin as biosorbent for phenol removal from aqueous solution: equilibrium, kinetic and thermodynamic studies. Chem. Eng. Process. Process Intensif. 70, 131–139 (2013)
Hu, Y.; Massart, D.L.: Uniform shell designs for optimization in reversed-phase liquid chromatography. J. Chromatogr. 485, 311–323 (1989)
Massart, D.; Vandeginste, B.G.; Buydens, L.M.; de Jong, S.; Lewi, P.; Smeyers-Verbeke, J.: Handbook of Chemometrics and Qualimetrics, Part A. Elsevier, Amsterdam (2003)
Nechar, M.; Molina Molina, M.F.; Rodriguez, L.C.; Bosque Sendra, J.M.: The application of Doehlert designs in the optimization of experimental variables in solid phase spectrophotometry. Anal. Chim. Acta 316, 185–193 (1995)
Ferreira, S.; Dos Santos, W.N.L.; Quintella, C.M.; Neto, B.B.; Bosque-Sendra, J.M.: Doehlert matrix: a chemometric tool for analytical chemistry-review. Talanta 63(4), 1061–1067 (2004)
Mutua, F.M.: The use of the Akaike Information Criterion in the identification of an optimum flood frequency model. Hydrol. Sci. J. 39(3), 235–244 (1994)
Burnham, K.P.; Anderson, D.R.: Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33(2), 261–304 (2004)
Hurvich, C.M.; Tsai, C.-L.: Regression and time series model selection in small samples. Biometrika. 76(2), 297–307 (1989)
Mallows, C.: Some comments on Cp. Technometrics 15, 661–662 (1973)
Amemiya, T.: Selection of regressors. Int. Econ. Rev. 21, 331–354 (1980)
Yaffee, R.A.; McGee, M.: Introduction to time series analysis and forecasting with applications of SAS and SPSS, 1st edn. Academic Press, Inc., (2000)
Larson, L; Edwards,.H.: Multivariable calculus, 9th edn. Cole Cengage Learning (2010)
Martínez-Legaz, J.E.: On Weierstrass extreme value theorem. Optim. Lett. 8(1), 391–393 (2014)
Tang, Y.; Liu, Q.; Chen, F.: Preparation and characterization of activated carbon from waste ramulus mori. Chem. Eng. J. 203, 19–24 (2012)
Zhang, W.; Tao, H.; Zhang, B.; Ren, J.; Lu, G.; Wang, Y.: One-pot synthesis of carbonaceous monolith with surface sulfonic groups and its carbonization/activation. Carbon 49(6), 1811–1820 (2011)
Muniandy, L.; Adam, F.; Mohamed, A.R.; Ng, E.-P.: The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater. 197, 316–323 (2014)
Sun, Y.; Yue, Q.; Gao, B.; Wang, Y.; Gao, Y.; Li, Q.: Preparation of highly developed mesoporous activated carbon by \(\text{ H }_{4}\text{ P }_{2}\text{ O }_{7}\) activation and its adsorption behavior for oxytetracycline. Powder Technol. 249, 54–62 (2013)
Sun, Y.; Yue, Q.; Gao, B.; Gao, Y.; Li, Q.; Wang, Y.: Adsorption of hexavalent chromium on Arundo donax Linn activated carbon amine-crosslinked copolymer. Chem. Eng. J. 217, 240–247 (2013)
Xu, X.; Gao, B.; Zhao, Y.; Chen, S.; Tan, X.; Yue, Q.; Lin, J.; Wang, Y.: Nitrate removal from aqueous solution by Arundo donax L. reed based anion exchange resin. J. Hazard. Mater. 203–204, 86–92 (2012)
Sun, Y.; Zhang, J.P.; Wen, C.; Zhang, L.: An enhanced approach for biochar preparation using fluidized bed and its application for \(\text{ H }_{2}\text{ S }\) removal. Chem. Eng. Process. Process Intensif. 104, 1–12 (2016)
Wongsiriamnuay, T.; Tippayawong, N.: Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis. Bioresour. Technol. 101(14), 5638–5644 (2010)
Abdullah, S.S.; Yusup, S.; Ahmad, M.M.; Ramli, A.; Ismail, L.: Thermogravimetry study on pyrolysis of various lignocellulosic biomass for potential hydrogen production. Int. J. Chem. Biol. Eng. 3(3), 137–141 (2010)
Rovani, S.; Rodrigues, A.G.; Medeiros, L.F.; Cataluña, R.; Lima, É.C.; Fernandes, A.N.: Synthesis and characterisation of activated carbon from agroindustrial waste - Preliminary study of 17\(\beta \)-estradiol removal from aqueous solution. J. Environ Chem. Eng. 4(2), 2128–2137 (2016)
Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015)
Hadoun, H.; Sadaoui, Z.; Souami, N.; Sahel, D.; Toumert, I.: Characterization of mesoporous carbon prepared from date stems by \(\text{ H }_{3}\text{ PO }_{4}\) chemical activation. Appl. Surf. Sci. 280, 1–7 (2013)
Xu, Z.; Zhang, W.; Pan, B.; Hong, C.; Lv, L.; Zhang, Q.; Pan, B.; Zhang, Q.: Application of the Polanyi potential theory to phthalates adsorption from aqueous solution with hyper-cross-linked polymer resins. J. Colloid Interface Sci. 319(2), 392–397 (2008)
Ahmed, M.J.: Potential of Arundo donax L. stems as renewable precursors for activated carbons and utilization for wastewater treatments: Review”. J. Taiwan Inst. Chem. Eng. 63, 336–343 (2016)
Sun, Y.; Zhang, J.-P.; Yang, G.; Li, Z.-H.: Preparation of activated carbon with large specific surface area from reed black liquor. Environ. Technol. 28(5), 491–497 (2007)
Fu, K.; Yue, Q.; Gao, B.; Sun, Y.; Wang, Y.; Li, Q.; Zhao, P.; Chen, S.: Physicochemical and adsorptive properties of activated carbons from Arundo donax Linn utilizing different iron salts as activating agents. J. Taiwan Inst. Chem. Eng. 45(6), 3007–3015 (2014)
Vernersson, T.; Bonell, P.R.; Cerrella, E.G.; Cukierman, A.L.: Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation. Bioresour.Technol. 83(2), 95–104 (2002)
Mahmoud, L.H.: Removal of iron (II) from wastewater by locally prepared of activated carbon. Eng. Technol. J. 30, 344–353 (2012)
Sun, Y.; Yue, Q.; Gao, B.; Wang, B.; Li, Q.; Huang, L.; Xu, X.: Comparison of activated carbons from Arundo donax Linn with \(\text{ H }_{4}\text{ P }_{2}\text{ O }_{7}\) activation by conventional and microwave heating methods. Chem. Eng. J. 192, 308–314 (2012)
Chayid, M.A.; Ahmed, M.J.: Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: Isotherms, kinetics, and thermodynamics studies. J. Environ. Chem. Eng. 3(3), 1592–1601 (2015)