Decline in the incidence of invasive pneumococcal disease at a medical center in Taiwan, 2000–2012

BMC Infectious Diseases - Tập 14 - Trang 1-8 - 2014
Chih-Cheng Lai1, Sheng-Hsiang Lin2,3, Chun-Hsing Liao4, Wang-Huei Sheng5, Po-Ren Hsueh5,6
1Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Taiwan
2Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, Taiwan
3Department of Internal Medicine, New Taipei City Hospital, New Taipei City, Taiwan
4Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taipei County, Taiwan
5Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
6Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan,

Tóm tắt

It is essential to investigate the serotype distribution of pneumococcal diseases in each region and its associated clinical features. This study investigated the annual incidence of invasive pneumococcal disease (IPD) and the distribution of serotypes of isolates causing IPD at a medical center in northern Taiwan during the period 2000 to 2012. Serotypes of all available Streptococcus pneumoniae isolates causing IPD were determined using the latex agglutination test. During the study period, the annual incidence (per 10,000 admissions) of IPD decreased significantly from 9.8 in 2000 to 2.1 in 2012 (P < 0.001). The annual incidence of all-cause bacteremia, primary pneumococcal bacteremia, bacteremic pneumonia, peritonitis, and meningitis also decreased significantly during the study period (P < 0.05). In contrast to the decrease in annual incidence of pneumococcal serotypes 14, 23F and 6B, the incidence and the proportion of serotype 19A significantly increased with time (P < 0.001). The coverage rate of 7-valent protein conjugated vaccine (PCV-7) and PCV-10 decreased significantly; however, the coverage rate of PCV-13 and pneumococcal polysaccharide vaccine (PPV-23) remained stable over time. Serotype 14 and 19A isolates were commonly isolated from blood and pleural effusion, respectively. Serotypes 14 and 23F were the two most common serotypes found in adult patients, and serotypes 14 and 19A were the two most common serotypes isolated from children. Although the incidence of IPD has decreased, serotype 19A is an emerging problem in Taiwan. The distribution of serotypes of pneumococci varied with clinical symptoms and age. As the changing distribution of pneumococcal serotype with time, the coverage rate of pneumococcal vaccines would be different.

Tài liệu tham khảo

Hausdoff WP, Feikin DR, Klugman KP: Epidemiological differences among pneumococcal serotype. Lancet Infect Dis. 2005, 5: 83-93. 10.1016/S1473-3099(05)01280-6. Garcia-Vidal C, Ardanuy C, Gudiol C, Cuervo G, Calatayud L, Bodro M, Duarte R, Fernández-Sevilla A, Antonio M, Liñares J, Carratalà J: Clinical and microbiological epidemiology of Streptococcus pneumoniae bacteremia in cancer patients. J Infect. 2012, 65: 521-527. 10.1016/j.jinf.2012.08.015. Chen LF, Chen HP, Huang YS, Huang KY, Chou P, Lee CC: Pneumococcal pneumonia and the risk of stroke: a population-based follow-up study. PLoS One. 2012, 7: e51452-10.1371/journal.pone.0051452. Pichon B, Ladhani SN, Slack MP, Segonds-Pichon A, Andrews NJ, Waight PA, Miller E, George R: Changes in the molecular epidemiology of Streptococcus pneumoniae causing meningitis following the introduction of pneumococcal conjugate vaccination in England and Wales. J Clin Microbiol. 2013, 51: 820-827. 10.1128/JCM.01917-12. Rueda AM, Serpa JA, Matloobi M, Mushtaq M, Musher DM: The spectrum of invasive pneumococcal disease at an adult tertiary care hospital in the early 21st century. Medicine (Baltimore). 2010, 89: 331-336. 10.1097/MD.0b013e3181f2b824. Henrichsen J: Six newly recongnized types of Streptococcus pneumoniae. J Clin Microbiol. 1995, 33: 2759-2762. Konradsen HB, Kaltoft MS: Invasive pneumococcal infections in Denmark from 1995 tto 1999. Clin Diagn Lab Immunol. 2002, 9: 358-365. Täuber MG, Burroughs M, Niemöller UM, Kuster H, Borschberg U, Tuomanen E: Difference pathophysiology in experiemental meningitis cause- by three strains of Streptococcus pneumoniae. J Infect Dis. 1991, 163: 806-811. 10.1093/infdis/163.4.806. Engelhard D, Pomeranz S, Gallily R, Strauss N, Tuomanen E: Serotpye-related differences in inflammatory response to Streptococcus pneumoniae in experimental meningitis. J Infect Dis. 1997, 175: 979-982. 10.1086/514005. Briles DE, Crain MJ, Gray BM, Forman C, Yother J: Strong association between capsular type and virulence for mice among human isolates of Streptococcus pneumoniae. Infect Immun. 1992, 60: 111-116. Kalin M, Ortqvist A, Almela M, Aufwerber E, Dwyer R, Henriques B, Jorup C, Julander I, Marrie TJ, Mufson MA, Riquelme R, Thalme A, Torres A, Woodhead MA: Prospective study of prognostic factors in community-acquired bacteremic pneumococcal diseases in 5 countires. J Infect Dis. 2000, 182: 840-847. 10.1086/315760. Moroney JF, Fiore AE, Harrison LH, Patterson JE, Farley MM, Jorgensen JH, Phelan M, Facklam RR, Cetron MS, Breiman RF, Kolczak M, Schuchat A: Clinical outcomes of bacteremic pneumococcal pneumonia in the era of antibiotic resistance. Clin Infect Dis. 2001, 33: 797-805. 10.1086/322623. Robinson KA, Baughman W, Rothrock G, Barrett NL, Pass M, Lexau C, Damaske B, Stefonek K, Barnes B, Patterson J, Zell ER, Schuchat A, Whitney CG, Active Bacterial Core Surveillance (ABCs)/Emerging Infections Program Network: Epidemiology of invasive Streptococcus pneumoniae infections in the United States, 1995–1998: opportunities for prevention in the conjugate vaccine era. JAMA. 2001, 285: 1729-1735. 10.1001/jama.285.13.1729. Stanek RJ, Mufson MA: A 20-year epidemiological study of pneumococcal meningitis. Clin Infect Dis. 1999, 28: 1265-1272. 10.1086/514777. Tsai HY, Chen YH, Liao CH, Lu PL, Huang CH, Lu CT, Chuang YC, Tsao SM, Chen YS, Liu YC, Chen WY, Jang TN, Lin HC, Chen CM, Shi ZY, Pan SC, Yang JL, Kung HC, Liu CE, Cheng YJ, Liu JW, Sun W, Wang LS, Ko WC, Yu KW, Chiang PC, Lee MH, Lee CM, Hsu GJ, Hsueh PR: Trends in the antimicrobial susceptibilities and serotypes of Streptococcus pneumoniae: results from the Tigecycline In Vitro Surveillance in Taiwan (TIST) study, 2006–2010. Int J Antimicrob Agents. 2013, 42: 312-316. 10.1016/j.ijantimicag.2013.05.013. Liao WH, Lin SH, Lai CC, Tan CK, Liao CH, Huang YT, Wang CY, Hsueh PR: Impact of pneumococcal vaccine on invasive pneumococcal disease in Taiwan. Eur J Clin Microbiol Infect Dis. 2010, 29: 489-492. 10.1007/s10096-010-0873-7. Hausdroff WP, Byrand J, Kloek C, Paradiso PR, Siber GR: The contribution of specific pneumococcal serogroups to different disease manifestations: implication for conjugate vaccine formulation and use, part II. Clin Infect Dis. 2000, 30: 122-140. 10.1086/313609. Scott JA, Hall AJ, Dagan R, Dixon JM, Eykyn SJ, Fenoll A, Hortal M, Jetté LP, Jorgensen JH, Lamothe F, Latorre C, Macfarlane JT, Shlaes DM, Smart LE, Taunay A: Serogroup-specific epidemiology of Streptococcus pneumoniae: associations with age, sex and geography in 7000 episodes of invasive disease. Clin Infect Dis. 1996, 22: 973-981. 10.1093/clinids/22.6.973. Sniadack DH, Schwartz B, Lipman H, et al: Potential interventions for the prevention of childhood pneumonia: geographic and temporal differences in serotype and serogroup distribution of sterile site pneumococcal isolates from children—implications for vaccine strategies. Pediatr Infect Dis J. 1995, 14: 503-510. 10.1097/00006454-199506000-00007. Austrian R: The enduring pneumococcus: unfinished business and opportunities for the future. Microb Drug Resist. 1997, 3: 111-115. 10.1089/mdr.1997.3.111. Bewick T, Sheppard C, Greenwood S, Slack M, Trotter C, George R, Lim WS: Serotypes associated with the development of pneumococcal para-pneumonic effusion in adults. Eur Respir J. 2013, 42: 733-741. 10.1183/09031936.00144712. Liu C, Xiong X, Xu W, Sun J, Wang L, Li J: Serotypes and patterns of anitbiotic resistance in strains causing invasive pneumococcal disease in children less than 5 years of age. PLoS One. 2013, 8: e54254-10.1371/journal.pone.0054254. Reijtman V, Fossati S, Hernández C, Sommerfleck P, Bernáldez P, Litterio M, Berberian G, Regueira M, Lopardo H: Serotype distribution of pneumococci isolated from pediatric patients with acute otitis media and invasive infection, and potential coverage of pneumococcal conjugated vaccines. Rev Argent Microbiol. 2013, 45: 27-33. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2334/14/76/prepub