Detection of sealed and unsealed cracks with complex backgrounds using deep convolutional neural network
Tài liệu tham khảo
Agathos, 2018, Multiple crack detection in 3D using a stable XFEM and global optimization, Comput. Mech., 62, 835, 10.1007/s00466-017-1532-y
Zakeri, 2013, A multi-stage expert system for classification of pavement cracking, 1125
Chatterjee, 2018, A fast and accurate automated pavement crack detection algorithm, 2140
Cubero-Fernandez, 2017, Efficient pavement crack detection and classification, Eurasip J. Image Video Process., 2017, 39, 10.1186/s13640-017-0187-0
Gopalakrishnan, 2010
Wang, 2019, Automatic detection of rail surface cracks with a superpixel-based data-driven framework, J. Comput. Civ. Eng., 33, 10.1061/(ASCE)CP.1943-5487.0000799
Zou, 2012, CrackTree: automatic crack detection from pavement images, Pattern Recogn. Lett., 33, 227, 10.1016/j.patrec.2011.11.004
Zhang, 2016, Efficient system of cracking-detection algorithms with 1-mm 3D-surface models and performance measures, J. Comput. Civ. Eng., 30, 10.1061/(ASCE)CP.1943-5487.0000581
Wang, 2017, Cracking classification using minimum rectangular cover-based support vector machine, J. Comput. Civ. Eng., 31, 10.1061/(ASCE)CP.1943-5487.0000672
Tedeschi, 2017, A real-time automatic pavement crack and pothole recognition system for mobile Android-based devices, Adv. Eng. Inform., 32, 11, 10.1016/j.aei.2016.12.004
Turkan, 2018, Adaptive wavelet neural network for terrestrial laser scanner-based crack detection, Autom. Constr., 94, 191, 10.1016/j.autcon.2018.06.017
Oliveira, 2013, Automatic road crack detection and characterization, IEEE Trans. Intell. Transp. Syst., 14, 155, 10.1109/TITS.2012.2208630
Shi, 2016, Automatic road crack detection using random structured forests, IEEE Trans. Intell. Transp. Syst., 17, 3434, 10.1109/TITS.2016.2552248
S. Chambon, C. Gourraud, J.M. Moliard, P. Nicolle, Road crack extraction with adapted filtering and markov model-based segmentation: Introduction and validation, International Joint Conference on Computer Vision Theory and Applications, VISAPP, 2010, p. sp. https://hal.archives-ouvertes.fr/hal-00612537.
Zhang, 2009, 1
Wu, 2012, A segment algorithm for crack detection, 6, 674
Zhang, 2009, Image enhancement algorithm on ridgelet domain in detection of road cracks, China J. Highway Transp., 2, 4
Zhou, 2010, Illumination invariant enhancement and threshold segmentation algorithm for asphalt pavement crack image, 1
Chen, 2012, Maximum correntropy estimation is a smoothed MAP estimation, IEEE Signal Process Lett., 19, 491, 10.1109/LSP.2012.2204435
Tang, 2013, Automatic crack detection and segmentation using a hybrid algorithm for road distress analysis, 3026
Yamaguchi, 2008, Image-based crack detection for real concrete surfaces, IEEJ Trans. Electr. Electron. Eng., 3, 128, 10.1002/tee.20244
Yu, 2007, Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel, Autom. Constr., 16, 255, 10.1016/j.autcon.2006.05.003
Zakeri, 2017, Image based techniques for crack detection, classification and quantification in asphalt pavement: a review, Arch. Comput. Meth. Eng., 24, 935, 10.1007/s11831-016-9194-z
Tsai, 2015, 1593950
Wang, 2015, Network level pavement evaluation with 1 mm 3D survey system, J. Traffic Transp. Eng., 2, 391
Oliveira, 2010, Improved road crack detection based on one-class Parzen density estimation and entropy reduction, 2201
Wang, 2010, Precision test of cracking surveys with the automated distress analyzer, J. Transp. Eng., 137, 571, 10.1061/(ASCE)TE.1943-5436.0000240
Li, 2011, Pavement crack classification via spatial distribution features, EURASIP J. Adv. Signal Process., 2011, 10.1155/2011/649675
Li, 2011, FoSA: F* seed-growing approach for crack-line detection from pavement images, Image Vis. Comput., 29, 861, 10.1016/j.imavis.2011.10.003
Tsai, 2012, Multiscale crack fundamental element model for real-world pavement crack classification, J. Comput. Civ. Eng., 28, 4014012, 10.1061/(ASCE)CP.1943-5487.0000271
Huang, 2012, Crack fundamental element (CFE) for multi-scale crack classification, 419
Tsai, 2013, Automating the crack map detection process for machine operated crack sealer, Autom. Constr., 31, 10, 10.1016/j.autcon.2012.11.033
Huang, 2014, A pavement crack detection method combining 2D with 3D information based on Dempster-Shafer theory, J. Comput. Aided Civ. Infrastruct. Eng., 29, 299, 10.1111/mice.12041
Mathavan, 2014, Use of a self-organizing map for crack detection in highly textured pavement images, J. Infrastruct. Syst., 21, 4014052, 10.1061/(ASCE)IS.1943-555X.0000237
Jiang, 2015, Enhanced crack segmentation algorithm using 3D pavement data, J. Comput. Civ. Eng., 30, 4015050, 10.1061/(ASCE)CP.1943-5487.0000526
Qiu, 2015, A comprehensive system for AASHTO PP67-10 based asphalt surfaced pavement cracking evaluation, Can. J. Civ. Eng., 43, 260, 10.1139/cjce-2014-0519
Amhaz, 2016, Automatic crack detection on two-dimensional pavement images: an algorithm based on minimal path selection, IEEE Trans. Intell. Transp. Syst., 17, 2718, 10.1109/TITS.2015.2477675
Li, 2016, Bounding box–based technique for pavement crack classification and measurement using 1 mm 3D laser data, J. Comput. Civ. Eng., 30, 10.1061/(ASCE)CP.1943-5487.0000568
Li, 2017, Three-dimensional pavement crack detection algorithm based on two-dimensional empirical mode decomposition, J. Transp. Eng. B: Pavements, 143
Wang, 2018, Automated shape-based pavement crack detection approach, Transport, 33, 598, 10.3846/transport.2018.1559
Hinton, 2006, A fast learning algorithm for deep belief nets, Neural Comput., 18, 1527, 10.1162/neco.2006.18.7.1527
Nhat-Duc, 2018, Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network, Autom. Constr., 94, 203, 10.1016/j.autcon.2018.07.008
Ragnoli, 2018, Pavement distress detection methods: a review, Infrastructures, 3, 58, 10.3390/infrastructures3040058
He, 2014, Spatial pyramid pooling in deep convolutional networks for visual recognition, 346
Zhang, 2017, Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network, J. Comput. Aided Civ. Infrastruct. Eng., 32, 805, 10.1111/mice.12297
Miller, 2014