The incorporation of Cr ions into the framework of ZnO for stable electrochemical performance in a membrane free alkaline Ni/Zn redox
Tài liệu tham khảo
Liu, 2015, Preliminary study of high energy density Zn/Ni flow batteries, J. Power Sources, 294, 574, 10.1016/j.jpowsour.2015.06.110
Huanga, 2014, Evaluation of tetraphenylporphyrin modified ZnO as anode material for Ni-Zn rechargeable battery, Electrochimica Acta, 123, 278, 10.1016/j.electacta.2014.01.033
Long, 2013, The effects of carbon coating on the electrochemical performances of ZnO in Ni–Zn secondary batteries, Electrochimica Acta, 105, 40, 10.1016/j.electacta.2013.04.162
Yang, 2010, Preparation and electrochemical performances of ZnO nanowires as anode materials for Ni/Zn secondary battery, Electrochimica Acta., 55, 7050, 10.1016/j.electacta.2010.06.075
R.A. Thilini Perera Rupasinghe, Dissolution and aggregation of zinc oxide nanoparticles at circumneutral pH; a study of size effects in the presence and absence of citric acid. University of Iowa Iowa Research Online, Master’s thesis (2011) 1–62.
Lee, 2011, Characteristics and electrochemical performance of the TiO2-coated: characteristics and electrochemical performance of the TiO2-coated ZnO anode for Ni-Zn secondary batteries, J. Phys. Chem. C, 115, 2572, 10.1021/jp110308b
Ma, 2008, Electrochemical performance of ZnO nanoplates as anode materials for Ni/Zn secondary batteries, J. Power Sources, 179, 395, 10.1016/j.jpowsour.2008.01.026
Wen, 2012, Electrochemical performances of ZnO with different morphology as anodic materials for Ni/Zn secondary batteries, Electrochimica Acta, 83, 376, 10.1016/j.electacta.2012.08.034
Zhang, 2008, Effects of conductive ceramic on the electrochemical performance of ZnO for Ni/Zn rechargeable battery, Electrochimica Acta, 53, 5386, 10.1016/j.electacta.2008.02.087
Yu, 2001, A study of calcium zincate as negative electrode materials for secondary batteries, J. Power Sources, 103, 93, 10.1016/S0378-7753(01)00833-3
Zhang, 2015, Enhancement of electrochemical performance with Zn-Al-Bi layered hydrotalcites as anode material for Zn/Ni secondary battery, Electrochimica Acta, 155, 61, 10.1016/j.electacta.2014.12.145
Wang, 2014, Superior cycle stability and high rate capability of Zn-Al-In-hydrotalcite as negative electrode materials for Ni-Zn secondary batteries, J. Power Sources, 251, 344, 10.1016/j.jpowsour.2013.11.071
Wu, 2009, Ag-modification improving the electrochemical performance of ZnO anode for Ni/Zn secondary batteries, J. Alloys and Compounds, 479, 624, 10.1016/j.jallcom.2009.01.013
Cho, 2008, Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution, J. Power Sources, 184, 610, 10.1016/j.jpowsour.2008.04.081
Wang, 2013, The electrochemical performances of La2O3-doped ZnO in Ni–Zn secondary batteries, Electrochimica Acta, 112, 104, 10.1016/j.electacta.2013.08.156
Fan, 2013, The preparation and electrochemical performances of the composite materials of CeO2 and ZnO as anode material for Ni–Zn secondary batteries, Electrochimica Acta, 108, 741, 10.1016/j.electacta.2013.07.031
Yuan, 2009, Preparation and electrochemical performance of nanosized Bi compounds-modified ZnO for Zn/Ni secondary cell, Electrochimica Acta, 54, 6617, 10.1016/j.electacta.2009.06.063
Zeng, 2011, Preparation and electrochemical performance of In-doped ZnO as anode material for Ni–Zn secondary cells, Electrochimica Acta, 56, 4075, 10.1016/j.electacta.2011.01.119
Xie, 2014, Effect of dodecyl sulfate anions on the electrochemical performances of Zinc-Aluminum-hydrotalcite as anode material for Zinc/Nickel secondary batteries, Electrochimica Acta, 149, 101, 10.1016/j.electacta.2014.10.058
Yang, 2014, Facile synthesis of novel two-dimensional silver-coated layered double hydroxide nanosheets as advanced anode material for Ni-Zn secondary batteries, J. Power Sources, 251, 14, 10.1016/j.jpowsour.2013.11.032
Yuan, 2007, Influence of surface modification with Sn6O4(OH)4 on electrochemical performance of ZnO in Zn/Ni secondary cells, J. Power Sources, 165, 905, 10.1016/j.jpowsour.2006.12.037
Frąckowiak, 1998, Passivation of zinc in alkaline solution effected by chromates and CrO–graphite system, J. Power Sources, 73, 175, 10.1016/S0378-7753(97)02799-7
David Lide, 2016
Kwak, 2015, Implementation of stable electrochemical performance using a Fe0.01ZnO anodic material in alkaline Ni–Zn redox battery, Chemical Engineering Journal, 281, 368, 10.1016/j.cej.2015.06.062
Lamba, 2015, ZnO doped SnO2 nanoparticles heterojunction photo-catalyst for environmental remediation, J. Alloys Compd., 653, 327, 10.1016/j.jallcom.2015.08.220
Burton, 2009, On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems, Micropor. Mesopor. Mat., 117, 75, 10.1016/j.micromeso.2008.06.010
Wu, 2015, Studying bubble–particle interactions by zeta potential distribution analysis, J. Colloid Interf. Sci., 449, 399, 10.1016/j.jcis.2015.01.040
Ramadoss, 2013, Facile preparation and electrochemical characterization of graphene/ZnO nanocomposite for supercapacitor applications, Mater. Chem. Phys., 140, 405, 10.1016/j.matchemphys.2013.03.057
Lee, 2013, ZnO incorporated LiFePO4 for high rate electrochemical performance in lithium ion rechargeable batteries, J.Alloy Compd., 550, 36, 10.1016/j.jallcom.2012.10.092
Park, 2016, Effect of surface energy and seed layer annealing temperature on ZnO seed layer formation and ZnO nanowire growth, Appl. Surf. Sci., 362, 132, 10.1016/j.apsusc.2015.11.193
Kang, 2016, The effects of ZnO morphology on photocatalytic efficiency of ZnO/RGO nanocomposites, Appl. Surf. Sci., 360, 270, 10.1016/j.apsusc.2015.10.190
Shin, 2012, Effects of electrolyte concentration on growth of dendritic zinc in aqueous solutions, Trans. Kor. Hydrogen New Energy Soc., 23, 390, 10.7316/KHNES.2012.23.4.390
