Dynamic interaction network inference from longitudinal microbiome data
Tóm tắt
Several studies have focused on the microbiota living in environmental niches including human body sites. In many of these studies, researchers collect longitudinal data with the goal of understanding not only just the composition of the microbiome but also the interactions between the different taxa. However, analysis of such data is challenging and very few methods have been developed to reconstruct dynamic models from time series microbiome data. Here, we present a computational pipeline that enables the integration of data across individuals for the reconstruction of such models. Our pipeline starts by aligning the data collected for all individuals. The aligned profiles are then used to learn a dynamic Bayesian network which represents causal relationships between taxa and clinical variables. Testing our methods on three longitudinal microbiome data sets we show that our pipeline improve upon prior methods developed for this task. We also discuss the biological insights provided by the models which include several known and novel interactions. The extended CGBayesNets package is freely available under the MIT Open Source license agreement. The source code and documentation can be downloaded from https://github.com/jlugomar/longitudinal_microbiome_analysis_public . We propose a computational pipeline for analyzing longitudinal microbiome data. Our results provide evidence that microbiome alignments coupled with dynamic Bayesian networks improve predictive performance over previous methods and enhance our ability to infer biological relationships within the microbiome and between taxa and clinical factors.
Tài liệu tham khảo
citation_journal_title=Nat Rev Genet; citation_title=The human microbiome: at the interface of health and disease; citation_author=I Cho, MJ Blaser; citation_volume=13; citation_publication_date=2012; citation_pages=260-70; citation_doi=10.1038/nrg3182; citation_id=CR1
citation_journal_title=Harmful Algae; citation_title=HABs in a changing world: a perspective on harmful algal blooms, their impacts, and research and management in a dynamic era of climactic and environmental change; citation_author=D Anderson; citation_volume=10; citation_publication_date=2012; citation_pages=3-17; citation_id=CR2
citation_journal_title=FEBS Lett; citation_title=The dynamic microbiome; citation_author=GK Gerber; citation_volume=588; citation_issue=22; citation_publication_date=2014; citation_pages=4131-139; citation_doi=10.1016/j.febslet.2014.02.037; citation_id=CR3
citation_journal_title=Sci Transl Med; citation_title=Temporal dynamics of the human vaginal microbiota; citation_author=P Gajer, RM Brotman, G Bai, J Sakamoto, UME Schütte, X Zhong, SSK Koenig, L Fu, ZS Ma, X Zhou, Z Abdo, LJ Forney, J Ravel; citation_volume=4; citation_issue=132; citation_publication_date=2012; citation_pages=132-52; citation_doi=10.1126/scitranslmed.3003605; citation_id=CR4
citation_journal_title=Proc Natl Acad Sci; citation_title=Patterned progression of bacterial populations in the premature infant gut; citation_author=PS La Rosa, BB Warner, Y Zhou, GM Weinstock, E Sodergren, CM Hall-Moore, HJ Stevens, WE Bennett, N Shaikh, LA Linneman, JA Hoffmann, A Hamvas, E Deych, BA Shands, WD Shannon, PI Tarr; citation_volume=111; citation_issue=34; citation_publication_date=2014; citation_pages=12522-7; citation_doi=10.1073/pnas.1409497111; citation_id=CR5
citation_journal_title=Math Biosci; citation_title=Identification of microbiota dynamics using robust parameter estimation methods; citation_author=M Chung, J Krueger, M Pop; citation_volume=294; citation_publication_date=2017; citation_pages=71-84; citation_doi=10.1016/j.mbs.2017.09.009; citation_id=CR6
citation_journal_title=Proc Natl Acad Sci; citation_title=Mathematical modeling of primary succession of murine intestinal microbiota; citation_author=S Marino, NT Baxter, GB Huffnagle, JF Petrosino, PD Schloss; citation_volume=111; citation_issue=1; citation_publication_date=2014; citation_pages=439-44; citation_doi=10.1073/pnas.1311322111; citation_id=CR7
citation_journal_title=PLoS Comput Biol; citation_title=Ecological modeling from time-series inference: Insight into dynamics and stability of intestinal microbiota; citation_author=RR Stein, V Bucci, NC Toussaint, CG Buffie, G Rätsch, EG Pamer, C Sander, JB Xavier; citation_volume=9; citation_issue=12; citation_publication_date=2013; citation_pages=1-11; citation_doi=10.1371/journal.pcbi.1003388; citation_id=CR8
citation_journal_title=ISME J; citation_title=Characterizing mixed microbial population dynamics using time-series analysis; citation_author=P Trosvik, NC Stenseth, K Rudi; citation_volume=2; citation_publication_date=2008; citation_pages=707-15; citation_doi=10.1038/ismej.2008.36; citation_id=CR9
Gibson TE, Gerber GK. Robust and scalable models of microbiome dynamics. In: Proceedings of the 35th International Conference on Machine Learning, PMLR Vol. 80.2018. p. 1763–1772.
McGeachie MJ, Sordillo JE, Gibson T, Weinstock GM, Liu YY, Gold DR, Weiss ST, Litonjua A. Longitudinal prediction of the infant gut microbiome with dynamic bayesian networks. Sci Rep. 2016:20359.
citation_journal_title=J Clin Microbiol; citation_title=Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation; citation_author=RP Nugent, MA Krohn, SL Hillier; citation_volume=29; citation_issue=2; citation_publication_date=1991; citation_pages=297-301; citation_id=CR12
citation_journal_title=Proc Natl Acad Sci; citation_title=Temporal and spatial variation of the human microbiota during pregnancy; citation_author=DB DiGiulio, BJ Callahan, PJ McMurdie, EK Costello, DJ Lyell, A Robaczewska, CL Sun, DSA Goltsman, RJ Wong, G Shaw, DK Stevenson, SP Holmes, DA Relman; citation_volume=112; citation_issue=35; citation_publication_date=2015; citation_pages=11060-5; citation_doi=10.1073/pnas.1502875112; citation_id=CR13
citation_journal_title=J Comput Biol; citation_title=Continuous representations of time-series gene expression data; citation_author=Z Bar-Joseph, GK Gerber, DK Gifford, TS Jaakkola, I Simon; citation_volume=10; citation_issue=3–4; citation_publication_date=2003; citation_pages=341-56; citation_doi=10.1089/10665270360688057; citation_id=CR14
citation_journal_title=Bioinformatics; citation_title=Clustered alignments of gene-expression time series data; citation_author=AA Smith, A Vollrath, CA Bradfield, M Craven; citation_volume=25; citation_issue=12; citation_publication_date=2009; citation_pages=119-27; citation_doi=10.1093/bioinformatics/btp206; citation_id=CR15
citation_journal_title=Nat Rev Genet; citation_title=Studying and modelling dynamic biological processes using time-series gene expression data; citation_author=Z Bar-Joseph, A Gitter, I Simon; citation_volume=13; citation_publication_date=2012; citation_pages=552-64; citation_doi=10.1038/nrg3244; citation_id=CR16
citation_title=Artificial intelligence: a modern approach; citation_publication_date=2003; citation_id=CR17; citation_author=SJ Russell; citation_author=P Norvig; citation_publisher=Prentice Hall Press
citation_journal_title=EURASIP J Adv Signal Proc; citation_title=Dynamic bayesian networks for audio-visual speech recognition; citation_author=AV Nefian, L Liang, X Pi, X Liu, K Murphy; citation_volume=11; citation_publication_date=2002; citation_pages=1274-88; citation_id=CR18
Zweig G. Speech recognition with dynamic bayesian networks. PhD thesis. 1998.
citation_journal_title=Proc Natl Acad Sci; citation_title=Predicting gene regulatory networks by combining spatial and temporal gene expression data in arabidopsis root stem cells; citation_author=MA de Luis Balaguer, AP Fisher, NM Clark, MG Fernandez-Espinosa, BK Möller, D Weijers, JU Lohmann, C Williams, O Lorenzo, R Sozzani; citation_volume=114; citation_issue=36; citation_publication_date=2017; citation_pages=7632-640; citation_doi=10.1073/pnas.1707566114; citation_id=CR20
citation_journal_title=J Proteome Res; citation_title=Dynamic bayesian network for accurate detection of peptides from tandem mass spectra; citation_author=JT Halloran, JA Bilmes, WS Noble; citation_volume=15; citation_issue=8; citation_publication_date=2016; citation_pages=2749-759; citation_doi=10.1021/acs.jproteome.6b00290; citation_id=CR21
citation_journal_title=J Mach Learn Res; citation_title=Learning non-stationary dynamic bayesian networks; citation_author=JW Robinson, AJ Hartemink; citation_volume=11; citation_publication_date=2010; citation_pages=3647-680; citation_id=CR22
citation_journal_title=Eng Appl Artif Intell; citation_title=Overview on bayesian networks applications for dependability, risk analysis and maintenance areas; citation_author=P Weber, G Medina-Oliva, C Simon, B Iung; citation_volume=25; citation_issue=4; citation_publication_date=2012; citation_pages=671-82; citation_doi=10.1016/j.engappai.2010.06.002; citation_id=CR23
citation_journal_title=PLoS Comput Biol; citation_title=CGBayesNets: Conditional gaussian bayesian network learning and inference with mixed discrete and continuous data; citation_author=MJ McGeachie, HH Chang, ST Weiss; citation_volume=10; citation_issue=6; citation_publication_date=2014; citation_pages=1-7; citation_doi=10.1371/journal.pcbi.1003676; citation_id=CR24
citation_journal_title=Bioinformatics; citation_title=BNFinder: exact and efficient method for learning bayesian networks; citation_author=B Wilczyǹski, N Dojer; citation_volume=25; citation_issue=2; citation_publication_date=2009; citation_pages=286-7; citation_doi=10.1093/bioinformatics/btn505; citation_id=CR25
citation_journal_title=Ann Statist; citation_title=Graphical models for associations between variables, some of which are qualitative and some quantitative; citation_author=SL Lauritzen, N Wermuth; citation_volume=17; citation_issue=1; citation_publication_date=1989; citation_pages=31-57; citation_doi=10.1214/aos/1176347003; citation_id=CR26
citation_journal_title=NeuroImage; citation_title=Comparing dynamic causal models using AIC, BIC and free energy; citation_author=WD Penny; citation_volume=59; citation_issue=1; citation_publication_date=2012; citation_pages=319-30; citation_doi=10.1016/j.neuroimage.2011.07.039; citation_id=CR27
citation_title=On sensitivity of the map bayesian network structure to the equivalent sample size parameter; citation_inbook_title=Proc. 23rd Conference on Uncertainty in Artificial Intelligence. UAI ’07.; citation_publication_date=2007; citation_id=CR28; citation_author=T Silander; citation_author=P Kontkanen; citation_author=P Myllymäki; citation_publisher=AUAI Press
citation_title=Learning the bayesian network structure: Dirichlet prior vs data; citation_inbook_title=Proc. 24th Conference on Uncertainty in Artificial Intelligence. UAI ’08.; citation_publication_date=2008; citation_id=CR29; citation_author=H Steck; citation_publisher=AUAI Press
citation_title=Kendall’s Advanced Theory of Statistics, Vol. 2B: Bayesian Inference; citation_publication_date=2004; citation_id=CR30; citation_author=A O’Hagan; citation_author=JJ Forster; citation_publisher=Edward Arnold Press
citation_journal_title=Genome Res; citation_title=Cytoscape: a software environment for integrated models of biomolecular interaction networks; citation_author=P Shannon, A Markiel, O Ozier, NS Baliga, JT Wang, D Ramage, N Amin, B Schwikowski, T Ideker; citation_volume=13; citation_issue=11; citation_publication_date=2003; citation_pages=2498-504; citation_doi=10.1101/gr.1239303; citation_id=CR31
citation_journal_title=Microbiol Mol Biol Rev; citation_title=Communication among oral bacteria; citation_author=PE Kolenbrander, RN Andersen, DS Blehert, PG Egland, JS Foster, RJ Palmer; citation_volume=66; citation_issue=3; citation_publication_date=2002; citation_pages=486-505; citation_doi=10.1128/MMBR.66.3.486-505.2002; citation_id=CR32
citation_title=Inferring microbial interactions from metagenomic time-series using prior biological knowledge; citation_inbook_title=Proc. 8th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics. ACM-BCB ’17.; citation_publication_date=2017; citation_id=CR33; citation_author=C Lo; citation_author=R Marculescu; citation_publisher=AUAI Press
citation_journal_title=Br J Nutr; citation_title=Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches; citation_author=T Jost, C Lacroix, C Braegger, C Chassard; citation_volume=110; citation_issue=7; citation_publication_date=2013; citation_pages=1253-62; citation_doi=10.1017/S0007114513000597; citation_id=CR34
citation_journal_title=BJOG; citation_title=Effects of tampons and menses on the composition and diversity of vaginal microbial communities over time; citation_author=RJ Hickey, Z Abdo, X Zhou, K Nemeth, M Hansmann, TW Osborn, F Wang, LJ Forney; citation_volume=120; citation_issue=6; citation_publication_date=2013; citation_pages=695-706; citation_doi=10.1111/1471-0528.12151; citation_id=CR35
citation_journal_title=Proc Natl Acad Sci; citation_title=Vaginal microbiome of reproductive-age women; citation_author=J Ravel, P Gajer, Z Abdo, GM Schneider, SSK Koenig, SL McCulle, S Karlebach, R Gorle, J Russell, CO Tacket; citation_volume=108; citation_issue=Suppl 1; citation_publication_date=2011; citation_pages=4680-687; citation_doi=10.1073/pnas.1002611107; citation_id=CR36
citation_journal_title=Trends Microbiol; citation_title=Lactobacillus iners: friend or foe?; citation_author=MI Petrova, G Reid, M Vaneechoutte, S Lebeer; citation_volume=25; citation_issue=3; citation_publication_date=2017; citation_pages=182-91; citation_doi=10.1016/j.tim.2016.11.007; citation_id=CR37
citation_journal_title=Sex Transm Infect; citation_title=A fruitful alliance: the synergy between atopobium vaginae and gardnerella vaginalis in bacterial vaginosis-associated biofilm; citation_author=L Hardy, V Jespers, S Abdellati, I De Baetselier, L Mwambarangwe, V Musengamana, J van de Wijgert, M Vaneechoutte, T Crucitti; citation_volume=92; citation_issue=7; citation_publication_date=2016; citation_pages=487-91; citation_doi=10.1136/sextrans-2015-052475; citation_id=CR38
citation_journal_title=Cell Host Microbe; citation_title=TIH: the integrative human microbiome project: Dynamic analysis of microbiome-host omics profiles during periods of human health and disease; citation_author=; citation_volume=16; citation_issue=3; citation_publication_date=2014; citation_pages=276-89; citation_doi=10.1016/j.chom.2014.08.014; citation_id=CR39