A Class of Finsler Metrics with Quadratic Curvatures

Bulletin of the Iranian Mathematical Society - Tập 46 - Trang 53-65 - 2019
Bahman Rezaei1, Mehran Gabrani1
1Department of Mathematics, Faculty of Sciences, Urmia University, Urmia, Iran

Tóm tắt

Finsler metrics of quadratic curvatures form a rich and important class of metrics. In this paper, we study spherically symmetric metrics of quadratic curvatures. We find equations that characterize R-quadratic spherically symmetric Finsler metrics. In addition, we find the necessary and sufficient conditions for the metrics to be W-quadratic and Ricci-quadratic types.

Tài liệu tham khảo

Bácsó, S., Matsumoto, M.: Randers spaces with the h-curvature tensor \(H\) dependent on position alone. Publ. Math. Debr. 57, 185–192 (2000) Bácsó, S., Rezaei, B.: On R-quadratic Einstein Finsler space. Publ. Math. Debr. 76, 58–66 (2010) Bidabad, B., Najafi, B., Tayebi, A.: On R-quadratic Finsler metrics. Iran. J. Sci. Technol. Trans. A 31(A4), 439–443 (2007) Huang, L., Mo, X.: Projectively flat Finsler metrics with orthogonal invariance. Ann. Pol. Math. 107, 259–270 (2013) Huang, L., Mo, X.: On spherically symmetric Finsler metrics of scalar curvature. J. Geom. Phys. 62, 2279–2287 (2012) Huaifu, L., Mo, X.: Examples of Finsler metrics with special curvature properties. Math. Nachr. 13, 1527–1537 (2015) Li, B., Shen, Z.: On Randers metrics of quadratic Riemann curvature. Int. J. Math. 29, 369–376 (2009) Najafi, B., Tayebi, A.: A new quantity in Finsler geometry. C. R. Acad. Sci. Paris Ser. I 349, 81–83 (2011) Rutz, S.: Symmetry in Finsler spaces, Finsler geometry. Contemp. Math. 196, 289–300 (1996) Shen, Z., Yang, G.: Randers metrics of reversible curvature. Int. J. Math. 16, 16 (2013) Zhou, L.: Spherically symmetric Finsler metrics in \(R^n\). Publ. Math. Debr. 80, 67–77 (2012) Tayebi, A., Peyghan, E.: On douglas surfaces. Bull. Math. Soc. Sci. Math. Roumanie TOME 55(103)(3), 327–335 (2012) Tayebi, A., Peyghan, E.: On E-curvature of R-quadratic Finsler metrics. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 28, 83–89 (2012) Tayebi, A., Sadeghi, H., Peyghan, E.: On generalized Douglas–Weyl spaces. Bull. Malays. Math. Sci. Soc. (2) 36(3), 587–594 (2013) Tayebi, A., Sadeghi, H., Peyghan, E.: On the class of locally dually flat \((\alpha, \beta )\)-metrics. Math. Slov. 65(1), 191–198 (2015) Tayebi, A., Tabatabaeifar, T.: Matsumoto metrics of reversible curvature. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 32, 165–200 (2016) Tayebi, A., Sadeghi, H.: On generalized Douglas–Weyl \((\alpha, \beta )\)-metrics. Acta Math. Sin. (English Series) 31(10), 1611–1620 (2015)