Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform

Biomaterials - Tập 32 - Trang 7913-7923 - 2011
Badriprasad Ananthanarayanan1, Yushan Kim1,2, Sanjay Kumar1,2
1Department of Bioengineering and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
2UC Berkeley – UCSF Graduate Program in Bioengineering, Berkeley, CA 94720, USA

Tài liệu tham khảo

Wen, 2008, Malignant gliomas in adults, N Engl J Med, 359, 492, 10.1056/NEJMra0708126 Nakada, 2007, Molecular targets of glioma invasion, Cell Mol Life Sci, 64, 458, 10.1007/s00018-007-6342-5 Furnari, 2007, Malignant astrocytic glioma: genetics, biology, and paths to treatment, Genes Dev, 21, 2683, 10.1101/gad.1596707 Pàez-Ribes, 2009, Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis, Cancer Cell., 15, 220, 10.1016/j.ccr.2009.01.027 Kunkel, 2001, Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2, Cancer Res, 61, 6624 Bissell, 2001, Putting tumours in context, Nat Rev Cancer, 1, 46, 10.1038/35094059 Bellail, 2004, Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion, Int J Biochem Cell Biol, 36, 1046, 10.1016/j.biocel.2004.01.013 Paganetti, 1988, Glioblastoma infiltration into central nervous system tissue in vitro - involvement of a metalloprotease, J Cell Biol, 107, 2281, 10.1083/jcb.107.6.2281 Bernstein, 1995, Glioblastoma cells do not intravasate into blood-vessels, Neurosurgery, 36, 124, 10.1227/00006123-199501000-00016 Ruoslahti, 1996, Brain extracellular matrix, Glycobiology, 6, 489, 10.1093/glycob/6.5.489 Gladson, 1999, The extracellular matrix of gliomas: modulation of cell function, J Neuropathol Exp Neurol, 58, 1029, 10.1097/00005072-199910000-00001 Laurent, 1992, Hyaluronan, FASEB J, 6, 2397, 10.1096/fasebj.6.7.1563592 Toole, 2004, Hyaluronan: from extracellular glue to pericellular cue, Nat Rev Cancer, 4, 528, 10.1038/nrc1391 Delpech, 1993, Hyaluronan and hyaluronectin in the extracellular matrix of human brain tumor stroma, Eur J Cancer, 29A, 1012, 10.1016/S0959-8049(05)80214-X Koochekpour, 1995, Hyaluronic acid/CD44H interaction induces cell detachment and stimulates migration and invasion of human glioma cells in vitro, Int J Cancer, 63, 450, 10.1002/ijc.2910630325 Radotra, 1997, Glioma invasion in vitro is mediated by CD44-hyaluronan interactions, J Pathol, 181, 434, 10.1002/(SICI)1096-9896(199704)181:4<434::AID-PATH797>3.0.CO;2-S Hayen, 1999, Hyaluronan stimulates tumor cell migration by modulating the fibrin fiber architecture, J Cell Sci, 112, 2241, 10.1242/jcs.112.13.2241 Giese, 1995, Substrates for astrocytoma invasion, Neurosurgery, 37, 294, 10.1227/00006123-199508000-00015 Akiyama, 2001, Hyaluronate receptors mediating glioma cell migration and proliferation, J Neurooncol, 53, 115, 10.1023/A:1012297132047 Okada, 1996, Suppression of CD44 expression decreases migration and invasion of human glioma cells, Int J Cancer, 66, 255, 10.1002/(SICI)1097-0215(19960410)66:2<255::AID-IJC20>3.0.CO;2-A Turley, 2002, Signaling properties of hyaluronan receptors, J Biol Chem, 277, 4589, 10.1074/jbc.R100038200 Xu, 2010, CD44 attenuates activation of the Hippo signaling pathway and is a prime therapeutic target for glioblastoma, Cancer Res, 70, 2455, 10.1158/0008-5472.CAN-09-2505 Ranuncolo, 2002, CD44 expression in human gliomas, J Surg Oncol, 79, 30, 10.1002/jso.10045 Ariza, 1995, Role of CD44 in the invasiveness of glioblastoma multiforme and the noninvasiveness of meningioma - an immunohistochemistry study, Hum Pathol, 26, 1144, 10.1016/0046-8177(95)90278-3 Bourguignon, 2008, Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression, Semin Cancer Biol, 18, 251, 10.1016/j.semcancer.2008.03.007 Bourguignon, 2003, Hyaluronan-mediated CD44 interaction with RhoGEF and Rho kinase promotes Grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (Macrophage-Colony stimulating factor) production and breast tumor progression, J Biol Chem, 278, 29420, 10.1074/jbc.M301885200 Tsatas, 2002, EGF receptor modifies cellular responses to hyaluronan in glioblastoma cell lines, J Clin Neurosci, 9, 282, 10.1054/jocn.2001.1063 Bourguignon, 2000, CD44 interaction with Tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration, J Biol Chem, 275, 1829, 10.1074/jbc.275.3.1829 Toole, 1971, Hyaluronate production and removal during corneal development in chick, Dev Biol, 26, 28, 10.1016/0012-1606(71)90104-7 Butcher, 2009, A tense situation: forcing tumour progression, Nat Rev Cancer, 9, 108, 10.1038/nrc2544 Kumar, 2009, Mechanics, malignancy, and metastasis: the force journey of a tumor cell, Cancer Metastasis Rev, 28, 113, 10.1007/s10555-008-9173-4 Ulrich, 2009, The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells, Cancer Res, 69, 4167, 10.1158/0008-5472.CAN-08-4859 Sen, 2009, Isoform-specific contributions of alpha-actinin to glioma cell mechanobiology, PLoS One, 4, e8427, 10.1371/journal.pone.0008427 Beadle, 2008, The role of Myosin II in glioma invasion of the brain, Mol Biol Cell, 19, 3357, 10.1091/mbc.e08-03-0319 Ulrich, 2010, Probing cellular mechanobiology in three-dimensional culture with collagen–agarose matrices, Biomaterials, 31, 1875, 10.1016/j.biomaterials.2009.10.047 Kaufman, 2005, Glioma expansion in collagen I matrices: analyzing collagen concentration-dependent growth and motility patterns, Biophys J, 89, 635, 10.1529/biophysj.105.061994 Hegedus, 2006, The interplay of cell-cell and cell-matrix interactions in the invasive properties of brain tumors, Biophys J, 91, 2708, 10.1529/biophysj.105.077834 Kim, 2008, Epidermal Growth Factor-induced enhancement of glioblastoma cell migration in 3D arises from an intrinsic increase in speed but an extrinsic matrix- and proteolysis-dependent increase in persistence, Mol Biol Cell, 19, 4249, 10.1091/mbc.e08-05-0501 Pathak, 2011, Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness, Integr Biol (Camb), 3, 267, 10.1039/c0ib00095g Gerecht, 2007, Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells, Proc Natl Acad Sci U S A, 104, 11298, 10.1073/pnas.0703723104 Baier Leach, 2003, Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds, Biotechnol Bioeng, 82, 578, 10.1002/bit.10605 Masters, 2005, Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells, Biomaterials, 26, 2517, 10.1016/j.biomaterials.2004.07.018 Campoccia, 1998, Semisynthetic resorbable materials from hyaluronan esterification, Biomaterials, 19, 2101, 10.1016/S0142-9612(98)00042-8 Wang, 2009, Development of hyaluronic acid-based scaffolds for brain tissue engineering, Acta Biomater, 5, 2371, 10.1016/j.actbio.2009.03.033 Lei, 2011, The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels, Biomaterials, 32, 39, 10.1016/j.biomaterials.2010.08.103 Burdick, 2011, Hyaluronic acid hydrogels for biomedical applications, Adv Mater, 23, H41, 10.1002/adma.201003963 Shu, 2002, Disulfide cross-linked hyaluronan hydrogels, Biomacromolecules, 3, 1304, 10.1021/bm025603c Young, 2011, Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro, Biomaterials, 32, 1002, 10.1016/j.biomaterials.2010.10.020 Jin, 2009, The effect of hyaluronic acid on the invasiveness of malignant glioma cells: comparison of invasion potential at hyaluronic acid hydrogel and matrigel, J Korean Neurosurg Soc, 46, 472, 10.3340/jkns.2009.46.5.472 Coquerel, 2009, Elastin-derived peptides: matrikines critical for glioblastoma cell aggressiveness in a 3-D system, Glia, 57, 1716, 10.1002/glia.20884 Smeds, 2001, Photocrosslinkable polysaccharides for in situ hydrogel formation, J Biomed Mater Res, 54, 115, 10.1002/1097-4636(200101)54:1<115::AID-JBM14>3.0.CO;2-Q Marklein, 2010, Spatially controlled hydrogel mechanics to modulate stem cell interactions, Soft Matter, 6, 136, 10.1039/B916933D Canal, 1989, Correlation between mesh size and equilibrium degree of swelling of polymeric networks, J Biomed Mater Res, 23, 1183, 10.1002/jbm.820231007 Kelm, 2003, Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types, Biotechnol Bioeng, 83, 173, 10.1002/bit.10655 Elbert, 2001, Protein delivery from materials formed by self-selective conjugate addition reactions, J Control Release, 76, 11, 10.1016/S0168-3659(01)00398-4 Lutolf, 2003, Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition, Biomacromolecules, 4, 713, 10.1021/bm025744e Khetan, 2009, Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels, Soft Matter, 5, 1601, 10.1039/b820385g Anseth, 1996, Mechanical properties of hydrogels and their experimental determination, Biomaterials, 17, 1647, 10.1016/0142-9612(96)87644-7 Elkin, 2007, Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation, J Neurotrauma, 24, 812, 10.1089/neu.2006.0169 Christ, 2010, Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy, J Biomech, 43, 2986, 10.1016/j.jbiomech.2010.07.002 Cheng, 2008, Rheological properties of the tissues of the central nervous system: a review, Med Eng Phys, 30, 1318, 10.1016/j.medengphy.2008.06.003 Segura, 2005, Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern, Biomaterials, 26, 359, 10.1016/j.biomaterials.2004.02.067 Brigham, 2009, Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks, Tissue Eng Part A, 15, 1645, 10.1089/ten.tea.2008.0441 Eng, 2010, Hyaluronan scaffolds: a balance between backbone functionalization and bioactivity, Acta Biomater, 6, 2407, 10.1016/j.actbio.2009.12.049 Collins, 2008, Investigation of the swelling behavior of crosslinked hyaluronic acid films and hydrogels produced using homogeneous reactions, J Appl Polym Sci, 109, 923, 10.1002/app.27631 Raeber, 2005, Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration, Biophys J, 89, 1374, 10.1529/biophysj.104.050682 Bellamkonda, 1995, Hydrogel-based 3-dimensional matrix for neural cells, J Biomed Mater Res, 29, 663, 10.1002/jbm.820290514 Ghosh, 2005, Rheological characterization of in situ cross-linkable hyaluronan hydrogels, Biomacromolecules, 6, 2857, 10.1021/bm050361c Massia, 1991, An RGD spacing of 440nm is sufficient for integrin Alpha-V-Beta-3-mediated fibroblast spreading and 140nm for focal contact and stress fiber formation, J Cell Biol, 114, 1089, 10.1083/jcb.114.5.1089 Rezania, 1999, Bioactivation of metal oxide surfaces. 1. Surface characterization and cell response, Langmuir, 15, 6931, 10.1021/la990024n Maheshwari, 2000, Cell adhesion and motility depend on nanoscale RGD clustering, J Cell Sci, 113, 1677, 10.1242/jcs.113.10.1677 Zaman, 2006, Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis, Proc Natl Acad Sci U S A, 103, 10889, 10.1073/pnas.0604460103 Lo, 2000, Cell movement is guided by the rigidity of the substrate, Biophys J, 79, 144, 10.1016/S0006-3495(00)76279-5 Peyton, 2005, Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion, J Cell Physiol, 204, 198, 10.1002/jcp.20274 Pathak, 2011, From molecular signal activation to locomotion: an integrated, multiscale analysis of cell motility on defined matrices, PLoS One, 6, e18423, 10.1371/journal.pone.0018423 Chen, 1997, Geometric control of cell life and death, Science, 276, 1425, 10.1126/science.276.5317.1425 Ulrich, 2011, Microscale mechanisms of agarose-induced disruption of collagen remodeling, Biomaterials, 32, 5633, 10.1016/j.biomaterials.2011.04.045 Kakita, 1999, Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations, Neuron, 23, 461, 10.1016/S0896-6273(00)80800-4 Thorne, 2006, In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space, Proc Natl Acad Sci U S A, 103, 5567, 10.1073/pnas.0509425103 Seidlits, 2010, The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation, Biomaterials, 31, 3930, 10.1016/j.biomaterials.2010.01.125 Ghosh, 2007, Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties, Biomaterials, 28, 671, 10.1016/j.biomaterials.2006.09.038 Unsgaard, 2006, Intra-operative 3D ultrasound in neurosurgery, Acta Neurochir (Wien), 148, 235, 10.1007/s00701-005-0688-y Y-l, 2010, Pore size variable type I collagen gels and their interaction with glioma cells, Biomaterials, 31, 5678, 10.1016/j.biomaterials.2010.03.039 Katsumi, 2004, Integrins in mechanotransduction, J Biol Chem, 279, 12001, 10.1074/jbc.R300038200 Knudson, 2002, CD44 and integrin matrix receptors participate in cartilage homeostasis, Cell Mol Life Sci, 59, 36, 10.1007/s00018-002-8403-0 Knupfer, 1999, CD44 expression and hyaluronic acid binding of malignant glioma cells, Clin Exp Metastasis, 17, 71, 10.1023/A:1026425519497 Novak, 1999, Hyaluronidase-2 overexpression accelerates intracerebral but not subcutaneous tumor formation of murine astrocytoma cells, Cancer Res, 59, 6246 David, 2004, Reticulated hyaluronan hydrogels: a model for examining cancer cell invasion in 3D, Matrix Biol, 23, 183, 10.1016/j.matbio.2004.05.005 Stern, 2008, Hyaluronidases in cancer biology, Semin Cancer Biol, 18, 275, 10.1016/j.semcancer.2008.03.017 Enegd, 2002, Overexpression of hyaluronan synthase-2 reduces the tumorigenic potential of glioma cells lacking hyaluronidase activity, Neurosurgery, 50, 1311 Becker, 2009, Final report of the safety assessment of hyaluronic acid, potassium hyaluronate, and sodium hyaluronate, Int J Toxicol, 28, 5, 10.1177/1091581809337738 Liu, 2007, Tumor engineering: orthotopic cancer models in mice using cell-loaded, injectable, cross-linked hyaluronan-derived hydrogels, Tissue Eng, 13, 1091, 10.1089/ten.2006.0297