Recent Progress of Surface Plasmon–Enhanced Light Trapping in GaAs Thin-Film Solar Cells

Plasmonics - Tập 18 - Trang 2009-2029 - 2023
Bo Wei1,2, Xu Mao1,2,3, Wen Liu1,2,3, Chunxue Ji1,2, Guiqiang Yang1,2, Yidi Bao1,2, Xiaoling Chen1,2, Fuhua Yang1,2,3, Xiaodong Wang1,2,3
1Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
2School of Integrated Circuits & Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences, Beijing, China
3Beijing Engineering Research Center of Semiconductor Micro-Nano Integrated Technology, Beijing, China

Tóm tắt

Light trapping technology is one of the effective ways to improve the performance of solar cells, which can enhance the light absorption and reduce the thickness of the material and thus the expense. In recent years, surface plasmons (SPs) have made considerable progress in this field. By exploiting the light scattering and coupling effects of SPs, the efficiency of solar cells can be improved greatly. The aim of this review is to summarize recent research results of surface plasmon–enhanced GaAs thin-film solar cells, which are technologically mature III–V photovoltaic devices and widely used. Various SP nanostructures employed by different research groups are introduced. It can be concluded that the fabrication method, material, shape, and arrangement of the nanostructures make significant impact on the light trapping effect, as well as the coordination of various SP structures. Key parameters including short-circuit current density (Jsc), open circuit voltage (Voc), power conversion efficiency (PCE), and fill factor (FF) values of typical GaAs thin-film solar cells with different SPs light trapping structures are summarized. Further prospective trends are also proposed for the performance promotion of GaAs solar cells.

Tài liệu tham khảo

Adachi S (1994) GaAs and related materials: bulk semiconducting and superlattice properties. World Scientific, Singapore Yamaguchi M, Takamoto T, Araki K, Ekins-Daukes N (2005) Multi-junction III-V solar cells: current status and future potential. Sol Energy 79:78–85. https://doi.org/10.1016/j.solener.2004.09.018 Adachi S (1992) Physical properties of III-V semiconductor compounds. John Wiley & Sons, Sadao Adachi Blakemore JS (1982) Semiconducting and other major properties of gallium-arsenide. J Appl Phys 53:R123–R181. https://doi.org/10.1063/1.331665 Green MA (2006) Third generation photovoltaics. https://doi.org/10.1109/COMMAD.2002.123718859-64.10.1109/COMMAD.2002.1237188 Ferry VE, Munday JN, Atwater HA (2010) Design considerations for plasmonic photovoltaics. Adv Mater 22:4794–4808. https://doi.org/10.1002/adma.201000488 Green MA (2002) Third generation photovoltaics: solar cells for 2020 and beyond. Phys E-Low-Dimension Sys Nanostruct 14:65–70. https://doi.org/10.1016/S1386-9477(02)00361-2 Iqbal T, Afsheen S (2016) Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under- and over-milling. Plasmonics 11:1247–1256. https://doi.org/10.1007/s11468-015-0168-z Pala RA, White J, Barnard E, Liu J, Brongersma ML (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21:3504–3509. https://doi.org/10.1002/adma.200900331 Munday JN, Atwater HA (2011) Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano Lett 11:2195–2201. https://doi.org/10.1021/nl101875t Iqbal T, Ijaz M, Javaid M, Rafique M, Riaz KN, Tahir MB, Nabi G, Abrar M, Afsheen S (2019) An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell. Plasmonics 14:147–154. https://doi.org/10.1007/s11468-018-0787-2 Sun RN, Fu HX, Wang J, Wang YC, Du XC, Zhao HC, Huo CL, Peng KQ (2017) Surface plasmon enhanced light trapping in metal/silicon nanobowl arrays for thin film photovoltaics. J Nanomater https://doi.org/10.1155/2017/4270794 Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830. https://doi.org/10.1038/nature01937 Boriskina SV, Ghasemi H, Chen G (2013) Plasmonic materials for energy: From physics to applications. Mater Today 16:375–386. https://doi.org/10.1016/j.mattod.2013.09.003 Mandal P, Sharma S (2016) Progress in plasmonic solar cell efficiency improvement: a status review. Renew Sustain Energy Rev 65:537–552. https://doi.org/10.1016/j.rser.2016.07.031 Akimov YA, Koh WS, Ostrikov K (2009) Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express 17:10195–10205. https://doi.org/10.1364/oe.17.010195 Paris A, Vaccari A, Lesina AC, Serra E, Calliari L (2012) Plasmonic scattering by metal nanoparticles for solar cells. Plasmonics 7:525–534. https://doi.org/10.1007/s11468-012-9338-4 Sabaeian M, Heydari M, Ajamgard N (2015) Plasmonic excitation-assisted optical and electric enhancement in ultra-thin solar cells: the influence of nano-strip cross section, Aip Advances 5. https://doi.org/10.1063/1.4928517 Spinelli P, Hebbink M, de Waele R, Black L, Lenzmann F, Polman A (2011) Optical impedance matching using coupled plasmonic nanoparticle arrays. Nano Lett 11:1760–1765. https://doi.org/10.1021/nl200321u Polman A (2008) Applied physics. Plasmonics applied, Science 322:868–869. https://doi.org/10.1126/science.1163959 Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213. https://doi.org/10.1038/nmat2629 Kosten ED, Atwater JH, Parsons J, Polman A, Atwater HA (2013) Highly efficient GaAs solar cells by limiting light emission angle. Light-Sci Appl 2. https://doi.org/10.1038/lsa.2013.1 Miller OD, Yablonovitch E, Kurtz SR (2012) Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit. IEEE J Photovoltaics 2:303–311. https://doi.org/10.1109/Jphotov.2012.2198434 Liu S, Yang WQ, Becker J, Kuo YS, Zhang YH (2015) Non-Lambertian reflective back scattering and its impact on device performance of ultrathin GaAs single-junction solar cells. IEEE J Photovoltaics 5:832–839. https://doi.org/10.1109/Jphotov.2015.2400332 Kasani S, Curtin K, Wu NQ (2019) A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics 8:2065–2089. https://doi.org/10.1515/nanoph-2019-0158 Saheb A, Smith JA, Josowicz M, Janata J, Baer DR, Engelhard MH (2008) Controlling size of gold clusters in polyaniline from top-down and from bottom-up. J Electroanal Chem 621:238–244. https://doi.org/10.1016/j.jelechem.2007.11.025 Milekhin AG, Meijers RJ, Richter T, Calarco R, Montanari S, Luth H, Paez Sierra BA, Zahn DR (2006) Raman scattering study of GaN nanostructures obtained by bottom-up and top-down approaches. J Phys-Condens Matter 18:5825–5834. https://doi.org/10.1088/0953-8984/18/26/003 Liu W, Wang XD, Xu R, Wang XF, Cheng KF, Ma HL, Yang FH, Li JM (2013) Long-range-ordered Ag nanodot arrays grown on GaAs substrate using nanoporous alumina mask. Mater Sci Semicond Process 16:160–164. https://doi.org/10.1016/j.mssp.2012.05.008 Felidj N, Aubard J, Levi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering, Physical Review B 65. https://doi.org/10.1103/PhysRevB.65.075419 Temple TL, Mahanama GDK, Reehal HS, Bagnall DM (2009) Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Sol Energy Mater Sol Cells 93:1978–1985. https://doi.org/10.1016/j.solmat.2009.07.014 Stuart HR, Hall DG (1998) Island size effects in nanoparticle-enhanced photodetectors. Appl Phys Lett 73:3815–3817. https://doi.org/10.1063/1.122903 Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101. https://doi.org/10.1063/1.2734885 Beck FJ, Polman A, Catchpole KR (2009) Tunable light trapping for solar cells using localized surface plasmons. J Appl Phys 105:114310. https://doi.org/10.1063/1.3140609 Liu W, Wang XD, Li YQ, Geng ZX, Yang FH, Li JM (2011) Surface plasmon enhanced GaAs thin film solar cells. Sol Energy Mater Sol Cells 95:693–698. https://doi.org/10.1016/j.solmat.2010.10.004 Nakayama K, Tanabe K, Atwater HA (2008) Surface plasmon enhanced photocurrent in thin GaAs solar cells. Conf Nanoscale Photonic and Cell Techno Photovoltaics. 7047,San Diego, CA Gladskikh PV, Gladskikh IA, Toropov NA, Baranov MA, Vartanyan TA (2015) Correlation between structural, optical, and electrical properties of self-assembled plasmonic nanostructures on the GaAs surface. J Nanopart Res 17:1–6. https://doi.org/10.1007/s11051-015-3236-6 Harada Y, Imura K, Okamoto H, Nishijima Y, Ueno K, Misawa H (2011) Plasmon-induced local photocurrent changes in GaAs photovoltaic cells modified with gold nanospheres: a near-field imaging study. J Appl Phys 110. https://doi.org/10.1063/1.3662114 Zhu SQ, Bian B, Zhu YF, Yang J, Zhang D, Feng L (2019) Enhancement in power conversion efficiency of GaAs solar cells by utilizing gold nanostar film for light-trapping. Front Chem 7:137. https://doi.org/10.3389/fchem.2019.00137 Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Physics Lett 93. https://doi.org/10.1063/1.2988288 Chang TH, Wu PH, Chen SH, Chan CH, Lee CC, Chen CC, Su YK (2009) Efficiency enhancement in GaAs solar cells using self-assembled microspheres. Opt Express 17:6519–6524. https://doi.org/10.1364/oe.17.006519 Martínez Castellano E, Tamayo-Arriola J, Montes Bajo M, Gonzalo A, Stanojević L, Ulloa JM, Klymov O, Yeste J, Agouram S, Muñoz E, Muñoz-Sanjosé V, Hierro A (2021) Self-assembled metal-oxide nanoparticles on GaAs: infrared absorption enabled by localized surface plasmons. Nanophotonics 10:2509–2518. https://doi.org/10.1515/nanoph-2021-0167 Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of Sub-25 Nm vias and trenches in polymers. Appl Phys Lett 67:3114–3116. https://doi.org/10.1063/1.114851 Cariou R, Benick J, Feldmann F, Höhn O, Hauser H, Beutel P, Razek N, Wimplinger M, Bläsi B, Lackner D, Hermle M, Siefer G, Glunz SW, Bett AW, Dimroth F (2018) III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nat Energy 3:326–333. https://doi.org/10.1038/s41560-018-0125-0 Chen H-L, Cattoni A, De Lépinau R, Walker AW, Höhn O, Lackner D, Siefer G, Faustini M, Vandamme N, Goffard J, Behaghel B, Dupuis C, Bardou N, Dimroth F, Collin S (2019) A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror. Nat Energy 4:761–767. https://doi.org/10.1038/s41560-019-0434-y Lee SK, Tan CL, Ju GW, Song JH, Yeo CI, Lee YT (2015) AuAg bimetallic nonalloyed nanoparticles on a periodically nanostructured GaAs substrate for enhancing light trapping. Opt Lett 40:5798–5801. https://doi.org/10.1364/OL.40.005798 Hong L, Rusli, Wang XC, Zheng HY, He LN, Xu XY, Wang H, Yu HY (2012) Design principles for plasmonic thin film GaAs solar cells with high absorption enhancement. J Appl Phys 112. https://doi.org/10.1063/1.4749800 Pudasaini PR, Ayon AA (2012) Nanostructured thin film silicon solar cells efficiency improvement using gold nanoparticles. Phys Status Solidi a-Appl Mater Sci 209:1475–1480. https://doi.org/10.1002/pssa.201228022 Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86. https://doi.org/10.1063/1.1855423 Lim SH, Mar W, Matheu P, Derkacs D, Yu ET (2007) Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys 101. https://doi.org/10.1063/1.2733649 Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41. https://doi.org/10.1021/la0513353 Sekhon JS, Verma SS (2011) Cu, CuO, and Cu2O nanoparticle plasmons for enhanced scattering in solar cells. Renewable Energy and the Environ. https://doi.org/10.1364/E2.2011.JWE22,Austin,Texas Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP (2007) Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett 7:1947–1952. https://doi.org/10.1021/nl070648a Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10:3184–3189. https://doi.org/10.1021/nl102108u Akimov YA, Koh WS (2010) Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnol 21:235201. https://doi.org/10.1088/0957-4484/21/23/235201 Hylton NP, Li XF, Giannini V, Lee KH, Ekins-Daukes NJ, Loo J, Vercruysse D, Van Dorpe P, Sodabanlu H, Sugiyama M, Maier SA (2013) Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes. Sci Rep 3:2874. https://doi.org/10.1038/srep02874 Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921. https://doi.org/10.1038/nmat3151 Singh G, Sekhon JS, Verma SS (2016) Cu nanoparticle plasmons to enhance GaAs solar cell efficiency. 13th Int Conf Fiber Opt Photonics https://doi.org/10.1364/PHOTONICS.2016.W3A.14,Kanpur Grandidier J, Callahan DM, Munday JN, Atwater HA (2012) Gallium arsenide solar cell absorption enhancement using whispering gallery modes of dielectric nanospheres. IEEE J Photovoltaics 2:123–128. https://doi.org/10.1109/Jphotov.2011.2180512 Grandidier J, Callahan DM, Munday JN, Atwater HA (2011) Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Adv Mater 23:1272–1276. https://doi.org/10.1002/adma.201004393 Tharwat MM, Almalki A, Mahros AM (2021) Plasmon-enhanced sunlight harvesting in thin-film solar cell by randomly distributed nanoparticle array, Materials (Basel), 14. https://doi.org/10.3390/ma14061380 Shi YP, Wang XD, Yang FH (2016) Disorder improves light absorption in thin film silicon solar cells with hybrid light trapping structure. Int J Optics https://doi.org/10.1155/2016/9371608 Saravanan S, Teja TK, Dubey RS, Kalainathan S (2016) Design and analysis of GaAs thin film solar cell using an efficient light trapping bottom structure. Mater Today-Proc 3:2463–2467. https://doi.org/10.1016/j.matpr.2016.04.163 Zainud-Deen SH, Dawoud M, Malhat HA, Aboul-Dahab MA (2019) Absorption enhancement of GaAs thin-film solar cells using tapered metal nanoantenna structures. Wireless Pers Commun 106:1659–1667. https://doi.org/10.1007/s11277-019-06236-x Singh G, Verma SS (2019) Plasmon enhanced light trapping in thin film GaAs solar cells by Al nanoparticle array. Phys Lett A 383:1526–1530. https://doi.org/10.1016/j.physleta.2019.02.008 Singh G, Verma SS (2019) Rear located Ag nanocylinders for photocurrent enhancement in thin film GaAs solar cells. 64th DAE Solid State Physics Symposium (DAE-SSPS), 2265. Indian Inst Technol Jodhpur, Jodhpur, INDIA Singh G, Verma SS (2020) Plasmonic periodic nanostructures for enhanced photovoltaic response in thin film GaAs solar cells. Opt Eng 59. https://doi.org/10.1117/1.Oe.59.12.127103 Shi B, Wang W, Yu X Q, Yang LL, Xu YP (2017) Enhancement of optical absorption in silicon thin-film solar cells with metal nanoparticles. Opt Eng 56. https://doi.org/10.1117/1.Oe.56.5.057105 Li X-n, Yuan Z-h, Zhou L (2014) Study of thin-film GaAs solar cells with cylindrical Ag nanoparticles and distributed Bragg reflector. Optoelectron Lett 10:38–42. https://doi.org/10.1007/s11801-014-3195-7 Singh G, Verma SS (2017) Optimized size and period of Al nanoparticles for thin film GaAs solar cells. 2nd IntConf Condens Matter App Phys (ICC) 1953. Bikaner, INDIA Singh G, Verma SS (2018) Enhanced efficiency of thin film GaAs solar cells with plasmonic metal nanoparticles. Energy Sources Part a-Recovery Utilization and Environmental Effects 40:155–162. https://doi.org/10.1080/15567036.2017.1407840 Sun C, Su J, Wang XQ (2015) A design of thin film silicon solar cells based on silver nanoparticle arrays. Plasmonics 10:633–641. https://doi.org/10.1007/s11468-014-9849-2 Zhang YN, Ouyang Z, Stokes N, Jia BH, Shi ZR, Gu M (2012) Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells. Appl Phys Lett 100. https://doi.org/10.1063/1.3703121 Xu R, Wang X, Song L, Liu W, Ji A, Yang F, Li J (2012) Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Opt Express 20:5061–5068. https://doi.org/10.1364/OE.20.005061 Wang JZ, Xu ZP, Bian F, Wang HY, Wang J (2017) Design and analysis of light trapping in thin-film gallium arsenide solar cells using an efficient hybrid nanostructure. J Nanophotonics 11. https://doi.org/10.1117/1.Jnp.11.046017 Singh G, Sekhon JS, Verma SS (2021) Plasmonic effects of Al nanoparticles embedded and non-embedded in thin dilm GaAs solar cells with Ta2O5 antireflective coating. Plasmonics 16:2091–2099. https://doi.org/10.1007/s11468-021-01467-w Yanshuo W, Nuofu C, Xingwang Z, Xiaoli Y, Yiming B, Min C, Yu W, Xiaofeng C, Tianmao H (2009) Ag surface plasmon enhanced double-layer antireflection coatings for GaAs solar cells. J Semicond 30. https://doi.org/10.1088/1674-4926/30/7/072005 Khan AD, Khan AD, Subhan FE, Noman M (2019) Efficient light management in ultrathin crystalline GaAs solar cell based on plasmonic square nanoring arrays. Plasmonics 14:1963–1970. https://doi.org/10.1007/s11468-019-00992-z Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum Hall effect in graphene. Science 315:1379. https://doi.org/10.1126/science.1137201 Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NM, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308. https://doi.org/10.1126/science.1156965 Li X, Chen W, Zhang S, Wu Z, Wang P, Xu Z, Chen H, Yin W, Zhong H, Lin S (2015) 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell. Nano Energy 16:310–319. https://doi.org/10.1016/j.nanoen.2015.07.003 Pan QH, Zhou SH, Guo YM, Shuai Y (2022) Enhanced photoelectric responsivity of bilayer graphene/GaAs photodetector using plasmon resonance grating structures. Optik 259. https://doi.org/10.1016/j.ijleo.2022.169031 Wu J, Qiu C, Feng S, Yao T, Yan Y, Lin S (2019) A synergetic enhancement of localized surface plasmon resonance and photo-induced effect for graphene/GaAs photodetector. Nanotechnol 31:105204. https://doi.org/10.1088/1361-6528/ab5a08 Wang B, Zhang X, Yuan XC, Teng JH (2012) Optical coupling of surface plasmons between graphene sheets. Appl Phys Lett 100. https://doi.org/10.1063/1.3698133 Jablan M, Buljan H, Soljacic M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80. https://doi.org/10.1103/PhysRevB.80.245435 Lin S-S, Wu Z-Q, Li X-Q, Zhang Y-J, Zhang S-J, Wang P, Panneerselvam R, Li J-F (2016) Stable 16.2% efficient surface plasmon-enhanced graphene/GaAs heterostructure solar cell. Advan Energy Mater 6. https://doi.org/10.1002/aenm.201600822 Lin SS, Lu YH, Xu J, Feng SR, Li JF (2017) High performance graphene/semiconductor van der Waals heterostructure optoelectronic devices. Nano Energy 40:122–148. https://doi.org/10.1016/j.nanoen.2017.07.036 Khan AD, Khan AD, Khan SD, Noman M (2018) Light absorption enhancement in tri-layered composite metasurface absorber for solar cell applications. Opt Mater 84:195–198. https://doi.org/10.1016/j.optmat.2018.07.009 Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339:1232009. https://doi.org/10.1126/science.1232009 Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:517. https://doi.org/10.1038/ncomms1528 Vora A, Gwamuri J, Pala N, Kulkarni A, Pearce JM, Guney DO (2014) Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Sci Rep 4:4901. https://doi.org/10.1038/srep04901 Li WC, Ying Y, Qiao XJ, Li Q, Qiao L, Zheng JW, Jiang LQ, Che SL (2016) Plasmonic metasurface for light absorption enhancement in GaAs thin film. Plasmonics 11:1401–1406. https://doi.org/10.1007/s11468-016-0190-9 Duche D, Torchio P, Escoubas L, Monestier F, Simon JJ, Flory F, Mathian G (2009) Improving light absorption in organic solar cells by plasmonic contribution. Sol Energy Mater Sol Cells 93:1377–1382. https://doi.org/10.1016/j.solmat.2009.02.028 Heidarzadeh H, Rostami A, Dolatyari M, Rostami G (2016) Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core-shell hemispherical nanoparticles and metallic back grating. Appl Opt 55:1779–1785. https://doi.org/10.1364/AO.55.001779 Beck FJ, Mokkapati S, Polman A, Catchpole KR (2010) Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells. Appl Phys Lett 96. https://doi.org/10.1063/1.3292020 Winans JD, Hungerford C, Shome K, Rothberg LJ, Fauchet PM (2015) Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both. Opt Express 23:A92–A105. https://doi.org/10.1364/OE.23.000A92 Fahr S, Kirchartz T, Rockstuhl C, Lederer F (2011) Approaching the Lambertian limit in randomly textured thin-film solar cells. Opt Express 19(Suppl 4):A865-874. https://doi.org/10.1364/OE.19.00A865 Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H (1999) Photovoltaic technology: the case for thin-film solar cells. Science 285:692–698. https://doi.org/10.1126/science.285.5428.692 Jadeja R, Charola S, Patel SK, Parmar J, Ladumor M, Nguyen K, Dhasarathan V (2020) Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber. J Mater Sci 55:3462–3469. https://doi.org/10.1007/s10853-019-04269-y Lu H, Guo X, Zhang J, Zhang X, Li S, Yang C (2019) Asymmetric metasurface structures for light absorption enhancement in thin film silicon solar cell. J Optics 21. https://doi.org/10.1088/2040-8986/ab0a53 Chen X, Jia BH, Zhang YA, Gu M (2013) Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light-Sci Appl 2. https://doi.org/10.1038/lsa.2013.48 Azad AK, Kort-Kamp WJ, Sykora M, Weisse-Bernstein NR, Luk TS, Taylor AJ, Dalvit DA, Chen HT (2016) Metasurface broadband solar absorber. Sci Rep 6:20347. https://doi.org/10.1038/srep20347 Xiong F, Zhang J, Zhu Z, Yuan X, Qin S (2015) Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping. Sci Rep 5. https://doi.org/10.1038/srep16998