From two-dimensional materials to heterostructures
Tài liệu tham khảo
Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193
Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279
Levendorf, 2012, Graphene and boron nitride lateral heterostructures for atomically thin circuitry, Nature, 488, 627, 10.1038/nature11408
Mao, 2013, Manipulating the electronic and chemical properties of graphene via molecular functionalization, Prog. Surf. Sci., 88, 132, 10.1016/j.progsurf.2013.02.001
Georgakilas, 2012, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications, Chem. Rev., 112, 6156, 10.1021/cr3000412
Kuila, 2012, Chemical functionalization of graphene and its applications, Prog. Mater Sci., 57, 1061, 10.1016/j.pmatsci.2012.03.002
Panchakarla, 2009, Synthesis, structure, and properties of boron- and nitrogen-doped graphene, Adv. Mater., 21, 4726
Qu, 2010, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano, 4, 1321, 10.1021/nn901850u
Novoselov, 2012, A roadmap for graphene, Nature, 490, 192, 10.1038/nature11458
Lin, 2012, Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor, Appl. Phys. Lett., 102, 203109, 10.1063/1.4807658
Li, 2013, Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy, ACS Nano, 7, 10344, 10.1021/nn4047474
Eda, 2011, Photoluminescence from chemically exfoliated MoS2, Nano Lett., 11, 5111, 10.1021/nl201874w
Butler, 2013, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano, 7, 2898, 10.1021/nn400280c
Novoselov, 2005, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA, 102, 10451, 10.1073/pnas.0502848102
Geim, 2009, Graphene: status and prospects, Science, 324, 1530, 10.1126/science.1158877
Neto, 2009, The electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109
Song, 2010, Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Lett., 10, 3209, 10.1021/nl1022139
Kim, 2012, Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition, Nano Lett., 12, 161, 10.1021/nl203249a
Wang, 2014, Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors, Adv. Mater., 26, 1559, 10.1002/adma.201304937
Chen, 2014, Graphene-like layered metal dichalcogenide/graphene composites: synthesis and applications in energy storage and conversion, Mater. Today, 17, 184, 10.1016/j.mattod.2014.04.001
Zeng, 2012, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol., 7, 490, 10.1038/nnano.2012.95
Mak, 2012, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol., 7, 494, 10.1038/nnano.2012.96
Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805
Chhowalla, 2013, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263, 10.1038/nchem.1589
Huang, 2013, Metal dichalcogenide nanosheets: preparation, properties and applications, Chem. Soc. Rev., 42, 1934, 10.1039/c2cs35387c
Bianco, 2013, Stability and exfoliation of germanane: a germanium graphane analogue, ACS Nano, 7, 4414, 10.1021/nn4009406
Feng, 2012, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett., 12, 3507, 10.1021/nl301047g
Li, 2013, Two-dimensional transition metal honeycomb realized: Hf on Ir(111), Nano Lett., 13, 4671, 10.1021/nl4019287
Geim, 2013, Van der Waals heterostructures, Nature, 499, 419, 10.1038/nature12385
Li, 2011, Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces, Nat. Phys., 7, 762, 10.1038/nphys2080
Richter, 2013, Interface superconductor with gap behavior like a high-temperature superconductor, Nature, 502, 528, 10.1038/nature12494
Dean, 2010, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol., 5, 722, 10.1038/nnano.2010.172
Britnell, 2013, Strong light-matter interactions in heterostructures of atomically thin films, Science, 340, 1311, 10.1126/science.1235547
Giovannetti, 2007, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations, Phys. Rev. B, 76, 073103, 10.1103/PhysRevB.76.073103
Echtermeyer, 2011, Strong plasmonic enhancement of photovoltage in graphene, Nat. Commun., 2, 458, 10.1038/ncomms1464
Huang, 2014, Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors, Nat. Mater., 10.1038/nmat4064
Lee, 2014, Atomically thin p–n junctions with van der Waals heterointerfaces, Nat. Nanotechnol., 9, 676, 10.1038/nnano.2014.150
Novoselov, 2012, Two-dimensional crystals-based heterostructures: materials with tailored properties, Phys. Scr., T146, 014006, 10.1088/0031-8949/2012/T146/014006
Bertolazzi, 2013, Nonvolatile memory cells based on MoS2/graphene heterostructures, ACS Nano, 7, 3246, 10.1021/nn3059136
Novoselov, 2011, Nobel lecture: graphene: materials in the flatland, Rev. Mod. Phys., 83, 837, 10.1103/RevModPhys.83.837
Novoselov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, 10.1038/nature04233
Kaul, 2014, Two-dimensional layered materials: structure, properties, and prospects for device applications, J. Mater. Res., 29, 348, 10.1557/jmr.2014.6
Meyer, 2009, Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes, Nano Lett., 9, 2683, 10.1021/nl9011497
Splendiani, 2010, Emerging photoluminescence in monolayer MoS2, Nano Lett., 10, 1271, 10.1021/nl903868w
Košmider, 2013, Electronic properties of the MoS2–WS2 heterojunction, Phys. Rev. B, 87, 075451, 10.1103/PhysRevB.87.075451
Lopez-Sanchez, 2013, Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotechnol., 8, 497, 10.1038/nnano.2013.100
Zhang, 2014, Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2, Nat. Nanotechnol., 9, 111, 10.1038/nnano.2013.277
Wu, 2013, Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2, Nat. Phys., 9, 149, 10.1038/nphys2524
Xiao, 2012, Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides, Phys. Rev. Lett., 108, 196802, 10.1103/PhysRevLett.108.196802
Xu, 2014, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys., 10, 343, 10.1038/nphys2942
Britnell, 2013, Resonant tunneling and negative differential conductance in graphene transistors, Nat. Commun., 4, 1794, 10.1038/ncomms2817
Choi, 2013, Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices, Nat. Commun., 4, 1624, 10.1038/ncomms2652
Yu, 2014, Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics, Nano Lett., 14, 3055, 10.1021/nl404795z
Kim, 2009, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706, 10.1038/nature07719
Liu, 2013, Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride, Nat. Commun., 4, 2541, 10.1038/ncomms3541
Zhan, 2012, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate, Small, 8, 966, 10.1002/smll.201102654
H. Wang, L.L. Yu, Y.H. Lee, W.J. Fang, A. Hsu, P. Herring, M. Chin, M. Dubey, L.J. Li, J. Kong, T. Palacios, Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition, arXiv:1302.4027v1.
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Geng, 2012, Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene, Sci. Rep., 3, 1134, 10.1038/srep01134
Hernandez, 2008, High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol., 3, 563, 10.1038/nnano.2008.215
Zheng, 2014, High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide, Nat. Commun., 5, 2995, 10.1038/ncomms3995
Wei, 2009, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett., 9, 1752, 10.1021/nl803279t
Li, 2009, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324, 1312, 10.1126/science.1171245
Reina, 2009, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 9, 30, 10.1021/nl801827v
Zhou, 2013, Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene, Nat. Commun., 4, 2096, 10.1038/ncomms3096
Ago, 2012, Catalytic growth of graphene: towards large-area single-crystalline graphene, J. Phys. Chem. Lett., 3, 2228, 10.1021/jz3007029
Wei, 2013, Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices, Angew. Chem. Int. Ed., 52, 14121, 10.1002/anie.201306086
Niu, 2013, Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene, J. Am. Chem. Soc., 135, 8409, 10.1021/ja403583s
Zangwill, 2011, Novel growth mechanism of epitaxial graphene on metals, Nano Lett., 11, 2092, 10.1021/nl2006005
Zhang, 2014, Elementary process for CVD graphene growth on Cu(110): size-selective carbon clusters, Sci. Rep., 4, 4431, 10.1038/srep04431
Zhang, 2013, Mechanisms of graphene chemical vapor deposition (CVD) growth
Geim, 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849
Zhang, 2013, Review of chemical vapor deposition of graphene and related applications, Acc. Chem. Res., 46, 2329, 10.1021/ar300203n
Sun, 2011, Graphene based new energy materials, Energy Environ. Sci., 4, 1113, 10.1039/c0ee00683a
Wei, 2010, Controllable synthesis of graphene and its applications, Adv. Mater., 22, 3225, 10.1002/adma.200904144
Li, 2010, Observation of Van Hove singularities in twisted graphene layers, Nat. Phys., 6, 109, 10.1038/nphys1463
Sarma, 2011, Electronic transport in two-dimensional graphene, Rev. Mod. Phys., 83, 407, 10.1103/RevModPhys.83.407
Xu, 2013, Graphene-like two-dimensional materials, Chem. Rev., 113, 3766, 10.1021/cr300263a
Ni, 2007, Graphene thickness determination using reflection and contrast spectroscopy, Nano Lett., 7, 2758, 10.1021/nl071254m
Zeng, 2012, An effective method for the fabrication of few-layer-thick inorganic nanosheets, Angew. Chem. Int. Ed., 51, 9052, 10.1002/anie.201204208
Coleman, 2011, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331, 568, 10.1126/science.1194975
Geng, 2012, Uniform hexagonal graphene flakes and films grown on liquid copper surface, Proc. Natl. Acad. Sci. USA, 109, 7992, 10.1073/pnas.1200339109
van der Zande, 2013, Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide, Nat. Mater., 12, 554, 10.1038/nmat3633
Yu, 2013, Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films, Sci. Rep., 3, 1866, 10.1038/srep01866
Liu, 2012, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates, Nano Lett., 12, 1538, 10.1021/nl2043612
Lee, 2012, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater., 24, 2320, 10.1002/adma.201104798
Lin, 2012, Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization, Nanoscale, 4, 6637, 10.1039/c2nr31833d
Gao, 2014, Face-to-face transfer of wafer-scale graphene films, Nature, 505, 190, 10.1038/nature12763
Song, 2013, A general method for transferring graphene onto soft surfaces, Nat. Nanotechnol., 8, 356, 10.1038/nnano.2013.63
Zhang, 2013, Formation of a stable p–n junction in a liquid-gated MoS2 ambipolar transistor, Nano Lett., 13, 3023, 10.1021/nl400902v
Schwierz, 2010, Graphene transistors, Nat. Nanotechnol., 5, 487, 10.1038/nnano.2010.89
Oostinga, 2007, Gate-induced insulating state in bilayer graphene devices, Nat. Mater., 7, 151, 10.1038/nmat2082
Han, 2007, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett., 98, 206805, 10.1103/PhysRevLett.98.206805
Cai, 2010, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature, 466, 470, 10.1038/nature09211
Lu, 2009, Tuning the electronic structure of graphene by an organic molecule, J. Phys. Chem. B, 113, 2, 10.1021/jp806905e
Samuels, 2013, Molecular doping and band-gap opening of bilayer graphene, ACS Nano, 7, 2790, 10.1021/nn400340q
Britnell, 2012, Field-effect tunneling transistor based on vertical graphene heterostructures, Science, 335, 947, 10.1126/science.1218461
Ionescu, 2011, Tunnel field-effect transistors as energy-efficient electronic switches, Nature, 479, 329, 10.1038/nature10679
Koppens, 2011, Graphene plasmonics: a platform for strong light-matter interactions, Nano Lett., 11, 3370, 10.1021/nl201771h
Georgiou, 2013, Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics, Nat. Nanotechnol., 8, 100, 10.1038/nnano.2012.224
Lee, 2013, Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures, ACS Nano, 7, 7931, 10.1021/nn402954e
Yu, 2013, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials, Nat. Nanotechnol., 8, 952, 10.1038/nnano.2013.219
Roy, 2013, Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices, Nat. Nanotechnol., 8, 826, 10.1038/nnano.2013.206
Yu, 2013, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nat. Mater., 12, 246, 10.1038/nmat3518
Reich, 2013, Interface superconductivity found in single crystal, Nature, 501, 474, 10.1038/501474a
Gozar, 2008, High-temperature interface superconductivity between metallic and insulating copper oxides, Nature, 455, 782, 10.1038/nature07293
Reyren, 2007, Superconducting interfaces between insulating oxides, Science, 317, 1196, 10.1126/science.1146006
Terrones, 2014, Bilayers of transition metal dichalcogenides: different stackings and heterostructures, J. Mater. Res., 29, 373, 10.1557/jmr.2013.284
Hunt, 2013, Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure, Science, 6139, 1427, 10.1126/science.1237240
Windom, 2011, A Raman spectroscopic study of MoS2 and MoO3: applications to tribological systems, Tribol. Lett., 42, 301, 10.1007/s11249-011-9774-x
Golyashov, 2012, Inertness and degradation of (0001) surface of Bi2Se3 topological insulator, J. Appl. Phys., 112, 113702, 10.1063/1.4767458
Haigh, 2012, Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices, Nat. Mater., 11, 764, 10.1038/nmat3386
Ogawa, 2012, Domain structure and boundary in single-layer graphene grown on Cu (111) and Cu (100) films, J. Phys. Chem. Lett., 3, 219, 10.1021/jz2015555
Ismach, 2010, Direct chemical vapor deposition of graphene on dielectric surfaces, Nano Lett., 10, 1542, 10.1021/nl9037714
Roth, 2013, Chemical vapor deposition and characterization of aligned and incommensurate graphene/hexagonal boron nitride heterostack on Cu(111), Nano Lett., 13, 2668, 10.1021/nl400815w
Wang, 2013, A platform for large-scale graphene electronics – CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride, Adv. Mater., 25, 2746, 10.1002/adma.201204904
Tang, 2012, Nucleation and growth of single crystal graphene on hexagonal boron nitride, Carbon, 50, 329, 10.1016/j.carbon.2011.07.062
Yang, 2013, Epitaxial growth of single-domain graphene on hexagonal boron nitride, Nat. Mater., 12, 792, 10.1038/nmat3695
Tang, 2013, Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition, Sci. Rep., 3, 3266, 10.1038/srep02666
Ci, 2010, Atomic layers of hybridized boron nitride and graphene domain, Nat. Mater., 9, 430, 10.1038/nmat2711
Liu, 2013, In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes, Nat. Nanotechnol., 8, 119, 10.1038/nnano.2012.256
Liu, 2011, Direct growth of graphene/hexagonal boron nitride stacked layers, Nano Lett., 11, 2032, 10.1021/nl200464j
Sutter, 2013, Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric films, Nano Lett., 13, 276, 10.1021/nl304080y
Meric, 2013, Graphene field-effect transistors based on boron-nitride dielectrics, Proc. IEEE, 101, 1609, 10.1109/JPROC.2013.2257634
Ju, 2014, Photoinduced doping in heterostructures of graphene and boron nitride, Nat. Nanotechnol., 9, 348, 10.1038/nnano.2014.60
Yankowitz, 2012, Emergence of superlattice Dirac points in graphene on hexagonal boron nitride, Nat. Phys., 8, 382, 10.1038/nphys2272
Dean, 2013, Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices, Nature, 497, 598, 10.1038/nature12186
Chen, 2014, Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures, Nat. Commun., 5, 4461, 10.1038/ncomms5461
Woods, 2014, Commensurate–incommensurate transition in graphene on hexagonal boron nitride, Nat. Phys., 10, 451, 10.1038/nphys2954
Ponomarenko, 2013, Cloning of Dirac fermions in graphene superlattices, Nature, 497, 594, 10.1038/nature12187
Cocco, 2010, Gap opening in graphene by shear strain, Phys. Rev. B, 81, 241412R, 10.1103/PhysRevB.81.241412
Robertson, 2006, High dielectric constant gate oxides for metal oxide Si transistors, Rep. Prog. Phys., 69, 327, 10.1088/0034-4885/69/2/R02
Farmer, 2009, Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors, Nano Lett., 9, 4474, 10.1021/nl902788u
Addou, 2013, Growth of a two-dimensional dielectric monolayer on quasi-freestanding graphene, Nat. Nanotechnol., 8, 41, 10.1038/nnano.2012.217
Dahal, 2013, Preparation and characterization of Ni(111)/graphene/Y2O3(111) heterostructures, J. Appl. Phys., 113, 194305, 10.1063/1.4805042
Kang, 2013, Band offsets and heterostructures of two-dimensional semiconductors, Appl. Phys. Lett., 102, 012111, 10.1063/1.4774090
Polman, 2012, Photonic design principles for ultrahigh-efficiency photovoltaics, Nat. Mater., 11, 174, 10.1038/nmat3263
Ganatra, 2014, Few-layer MoS2: a promising layered semiconductor, ACS Nano, 8, 4074, 10.1021/nn405938z
Terrones, 2013, Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides, Sci. Rep., 3, 1549, 10.1038/srep01549
Lu, 2014, Van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation, Nanoscale, 6, 4566, 10.1039/c4nr00783b
Kang, 2013, Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures, Nano Lett., 13, 5485, 10.1021/nl4030648
Fang, 2014, Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl. Acad. Sci. USA, 111, 6198, 10.1073/pnas.1405435111
Ling, 2014, Role of the seeding promoter in MoS2 growth by chemical vapor deposition, Nano Lett., 14, 464, 10.1021/nl4033704
Gong, 2014, Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide, Nano Lett., 14, 442, 10.1021/nl4032296
Wang, 2014, Chemical vapor deposition growth of crystalline monolayer MoSe2, ACS Nano, 8, 5125, 10.1021/nn501175k
Zhang, 2014, Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy, Nano Lett., 14, 3047, 10.1021/nl501000k
Editorial, Nat. Mater. 11 (2012) 9.
Zhou, 2014, Engineering topological surface states and Giant Rashba spin splitting in BiTeI/Bi2Te3 heterostructures, Sci. Rep., 4, 3841, 10.1038/srep03841
Zhang, 2014, Proximity effect in graphene–topological-insulator heterostructures, Phys. Rev. Lett., 112, 096802, 10.1103/PhysRevLett.112.096802
Hong, 2014, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures, Nat. Nanotechnol., 9, 682, 10.1038/nnano.2014.167
Furchi, 2014, Photovoltaic effect in an electrically tunable van der Waals heterojunction, Nano Lett., 14, 4785, 10.1021/nl501962c
Roy, 2014, Field-effect transistors built from all two-dimensional material components, ACS Nano, 8, 6259, 10.1021/nn501723y
Shim, 2014, Large-area single-layer MoSe2 and its van der Waals heterostructures, ACS Nano, 8, 6655, 10.1021/nn405685j
Wang, 2013, One-dimensional electrical contact to a two-dimensional material, Science, 342, 614, 10.1126/science.1244358