From two-dimensional materials to heterostructures

Progress in Surface Science - Tập 90 - Trang 21-45 - 2015
Tianchao Niu1, Ang Li1
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, People's Republic of China

Tài liệu tham khảo

Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193 Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279 Levendorf, 2012, Graphene and boron nitride lateral heterostructures for atomically thin circuitry, Nature, 488, 627, 10.1038/nature11408 Mao, 2013, Manipulating the electronic and chemical properties of graphene via molecular functionalization, Prog. Surf. Sci., 88, 132, 10.1016/j.progsurf.2013.02.001 Georgakilas, 2012, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications, Chem. Rev., 112, 6156, 10.1021/cr3000412 Kuila, 2012, Chemical functionalization of graphene and its applications, Prog. Mater Sci., 57, 1061, 10.1016/j.pmatsci.2012.03.002 Panchakarla, 2009, Synthesis, structure, and properties of boron- and nitrogen-doped graphene, Adv. Mater., 21, 4726 Qu, 2010, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano, 4, 1321, 10.1021/nn901850u Novoselov, 2012, A roadmap for graphene, Nature, 490, 192, 10.1038/nature11458 Lin, 2012, Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor, Appl. Phys. Lett., 102, 203109, 10.1063/1.4807658 Li, 2013, Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy, ACS Nano, 7, 10344, 10.1021/nn4047474 Eda, 2011, Photoluminescence from chemically exfoliated MoS2, Nano Lett., 11, 5111, 10.1021/nl201874w Butler, 2013, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano, 7, 2898, 10.1021/nn400280c Novoselov, 2005, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA, 102, 10451, 10.1073/pnas.0502848102 Geim, 2009, Graphene: status and prospects, Science, 324, 1530, 10.1126/science.1158877 Neto, 2009, The electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109 Song, 2010, Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Lett., 10, 3209, 10.1021/nl1022139 Kim, 2012, Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition, Nano Lett., 12, 161, 10.1021/nl203249a Wang, 2014, Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors, Adv. Mater., 26, 1559, 10.1002/adma.201304937 Chen, 2014, Graphene-like layered metal dichalcogenide/graphene composites: synthesis and applications in energy storage and conversion, Mater. Today, 17, 184, 10.1016/j.mattod.2014.04.001 Zeng, 2012, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol., 7, 490, 10.1038/nnano.2012.95 Mak, 2012, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol., 7, 494, 10.1038/nnano.2012.96 Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805 Chhowalla, 2013, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263, 10.1038/nchem.1589 Huang, 2013, Metal dichalcogenide nanosheets: preparation, properties and applications, Chem. Soc. Rev., 42, 1934, 10.1039/c2cs35387c Bianco, 2013, Stability and exfoliation of germanane: a germanium graphane analogue, ACS Nano, 7, 4414, 10.1021/nn4009406 Feng, 2012, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett., 12, 3507, 10.1021/nl301047g Li, 2013, Two-dimensional transition metal honeycomb realized: Hf on Ir(111), Nano Lett., 13, 4671, 10.1021/nl4019287 Geim, 2013, Van der Waals heterostructures, Nature, 499, 419, 10.1038/nature12385 Li, 2011, Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces, Nat. Phys., 7, 762, 10.1038/nphys2080 Richter, 2013, Interface superconductor with gap behavior like a high-temperature superconductor, Nature, 502, 528, 10.1038/nature12494 Dean, 2010, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol., 5, 722, 10.1038/nnano.2010.172 Britnell, 2013, Strong light-matter interactions in heterostructures of atomically thin films, Science, 340, 1311, 10.1126/science.1235547 Giovannetti, 2007, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations, Phys. Rev. B, 76, 073103, 10.1103/PhysRevB.76.073103 Echtermeyer, 2011, Strong plasmonic enhancement of photovoltage in graphene, Nat. Commun., 2, 458, 10.1038/ncomms1464 Huang, 2014, Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors, Nat. Mater., 10.1038/nmat4064 Lee, 2014, Atomically thin p–n junctions with van der Waals heterointerfaces, Nat. Nanotechnol., 9, 676, 10.1038/nnano.2014.150 Novoselov, 2012, Two-dimensional crystals-based heterostructures: materials with tailored properties, Phys. Scr., T146, 014006, 10.1088/0031-8949/2012/T146/014006 Bertolazzi, 2013, Nonvolatile memory cells based on MoS2/graphene heterostructures, ACS Nano, 7, 3246, 10.1021/nn3059136 Novoselov, 2011, Nobel lecture: graphene: materials in the flatland, Rev. Mod. Phys., 83, 837, 10.1103/RevModPhys.83.837 Novoselov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, 10.1038/nature04233 Kaul, 2014, Two-dimensional layered materials: structure, properties, and prospects for device applications, J. Mater. Res., 29, 348, 10.1557/jmr.2014.6 Meyer, 2009, Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes, Nano Lett., 9, 2683, 10.1021/nl9011497 Splendiani, 2010, Emerging photoluminescence in monolayer MoS2, Nano Lett., 10, 1271, 10.1021/nl903868w Košmider, 2013, Electronic properties of the MoS2–WS2 heterojunction, Phys. Rev. B, 87, 075451, 10.1103/PhysRevB.87.075451 Lopez-Sanchez, 2013, Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotechnol., 8, 497, 10.1038/nnano.2013.100 Zhang, 2014, Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2, Nat. Nanotechnol., 9, 111, 10.1038/nnano.2013.277 Wu, 2013, Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2, Nat. Phys., 9, 149, 10.1038/nphys2524 Xiao, 2012, Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides, Phys. Rev. Lett., 108, 196802, 10.1103/PhysRevLett.108.196802 Xu, 2014, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys., 10, 343, 10.1038/nphys2942 Britnell, 2013, Resonant tunneling and negative differential conductance in graphene transistors, Nat. Commun., 4, 1794, 10.1038/ncomms2817 Choi, 2013, Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices, Nat. Commun., 4, 1624, 10.1038/ncomms2652 Yu, 2014, Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics, Nano Lett., 14, 3055, 10.1021/nl404795z Kim, 2009, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706, 10.1038/nature07719 Liu, 2013, Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride, Nat. Commun., 4, 2541, 10.1038/ncomms3541 Zhan, 2012, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate, Small, 8, 966, 10.1002/smll.201102654 H. Wang, L.L. Yu, Y.H. Lee, W.J. Fang, A. Hsu, P. Herring, M. Chin, M. Dubey, L.J. Li, J. Kong, T. Palacios, Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition, arXiv:1302.4027v1. Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Geng, 2012, Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene, Sci. Rep., 3, 1134, 10.1038/srep01134 Hernandez, 2008, High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol., 3, 563, 10.1038/nnano.2008.215 Zheng, 2014, High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide, Nat. Commun., 5, 2995, 10.1038/ncomms3995 Wei, 2009, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett., 9, 1752, 10.1021/nl803279t Li, 2009, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324, 1312, 10.1126/science.1171245 Reina, 2009, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 9, 30, 10.1021/nl801827v Zhou, 2013, Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene, Nat. Commun., 4, 2096, 10.1038/ncomms3096 Ago, 2012, Catalytic growth of graphene: towards large-area single-crystalline graphene, J. Phys. Chem. Lett., 3, 2228, 10.1021/jz3007029 Wei, 2013, Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices, Angew. Chem. Int. Ed., 52, 14121, 10.1002/anie.201306086 Niu, 2013, Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene, J. Am. Chem. Soc., 135, 8409, 10.1021/ja403583s Zangwill, 2011, Novel growth mechanism of epitaxial graphene on metals, Nano Lett., 11, 2092, 10.1021/nl2006005 Zhang, 2014, Elementary process for CVD graphene growth on Cu(110): size-selective carbon clusters, Sci. Rep., 4, 4431, 10.1038/srep04431 Zhang, 2013, Mechanisms of graphene chemical vapor deposition (CVD) growth Geim, 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849 Zhang, 2013, Review of chemical vapor deposition of graphene and related applications, Acc. Chem. Res., 46, 2329, 10.1021/ar300203n Sun, 2011, Graphene based new energy materials, Energy Environ. Sci., 4, 1113, 10.1039/c0ee00683a Wei, 2010, Controllable synthesis of graphene and its applications, Adv. Mater., 22, 3225, 10.1002/adma.200904144 Li, 2010, Observation of Van Hove singularities in twisted graphene layers, Nat. Phys., 6, 109, 10.1038/nphys1463 Sarma, 2011, Electronic transport in two-dimensional graphene, Rev. Mod. Phys., 83, 407, 10.1103/RevModPhys.83.407 Xu, 2013, Graphene-like two-dimensional materials, Chem. Rev., 113, 3766, 10.1021/cr300263a Ni, 2007, Graphene thickness determination using reflection and contrast spectroscopy, Nano Lett., 7, 2758, 10.1021/nl071254m Zeng, 2012, An effective method for the fabrication of few-layer-thick inorganic nanosheets, Angew. Chem. Int. Ed., 51, 9052, 10.1002/anie.201204208 Coleman, 2011, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331, 568, 10.1126/science.1194975 Geng, 2012, Uniform hexagonal graphene flakes and films grown on liquid copper surface, Proc. Natl. Acad. Sci. USA, 109, 7992, 10.1073/pnas.1200339109 van der Zande, 2013, Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide, Nat. Mater., 12, 554, 10.1038/nmat3633 Yu, 2013, Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films, Sci. Rep., 3, 1866, 10.1038/srep01866 Liu, 2012, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates, Nano Lett., 12, 1538, 10.1021/nl2043612 Lee, 2012, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater., 24, 2320, 10.1002/adma.201104798 Lin, 2012, Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization, Nanoscale, 4, 6637, 10.1039/c2nr31833d Gao, 2014, Face-to-face transfer of wafer-scale graphene films, Nature, 505, 190, 10.1038/nature12763 Song, 2013, A general method for transferring graphene onto soft surfaces, Nat. Nanotechnol., 8, 356, 10.1038/nnano.2013.63 Zhang, 2013, Formation of a stable p–n junction in a liquid-gated MoS2 ambipolar transistor, Nano Lett., 13, 3023, 10.1021/nl400902v Schwierz, 2010, Graphene transistors, Nat. Nanotechnol., 5, 487, 10.1038/nnano.2010.89 Oostinga, 2007, Gate-induced insulating state in bilayer graphene devices, Nat. Mater., 7, 151, 10.1038/nmat2082 Han, 2007, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett., 98, 206805, 10.1103/PhysRevLett.98.206805 Cai, 2010, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature, 466, 470, 10.1038/nature09211 Lu, 2009, Tuning the electronic structure of graphene by an organic molecule, J. Phys. Chem. B, 113, 2, 10.1021/jp806905e Samuels, 2013, Molecular doping and band-gap opening of bilayer graphene, ACS Nano, 7, 2790, 10.1021/nn400340q Britnell, 2012, Field-effect tunneling transistor based on vertical graphene heterostructures, Science, 335, 947, 10.1126/science.1218461 Ionescu, 2011, Tunnel field-effect transistors as energy-efficient electronic switches, Nature, 479, 329, 10.1038/nature10679 Koppens, 2011, Graphene plasmonics: a platform for strong light-matter interactions, Nano Lett., 11, 3370, 10.1021/nl201771h Georgiou, 2013, Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics, Nat. Nanotechnol., 8, 100, 10.1038/nnano.2012.224 Lee, 2013, Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures, ACS Nano, 7, 7931, 10.1021/nn402954e Yu, 2013, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials, Nat. Nanotechnol., 8, 952, 10.1038/nnano.2013.219 Roy, 2013, Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices, Nat. Nanotechnol., 8, 826, 10.1038/nnano.2013.206 Yu, 2013, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nat. Mater., 12, 246, 10.1038/nmat3518 Reich, 2013, Interface superconductivity found in single crystal, Nature, 501, 474, 10.1038/501474a Gozar, 2008, High-temperature interface superconductivity between metallic and insulating copper oxides, Nature, 455, 782, 10.1038/nature07293 Reyren, 2007, Superconducting interfaces between insulating oxides, Science, 317, 1196, 10.1126/science.1146006 Terrones, 2014, Bilayers of transition metal dichalcogenides: different stackings and heterostructures, J. Mater. Res., 29, 373, 10.1557/jmr.2013.284 Hunt, 2013, Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure, Science, 6139, 1427, 10.1126/science.1237240 Windom, 2011, A Raman spectroscopic study of MoS2 and MoO3: applications to tribological systems, Tribol. Lett., 42, 301, 10.1007/s11249-011-9774-x Golyashov, 2012, Inertness and degradation of (0001) surface of Bi2Se3 topological insulator, J. Appl. Phys., 112, 113702, 10.1063/1.4767458 Haigh, 2012, Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices, Nat. Mater., 11, 764, 10.1038/nmat3386 Ogawa, 2012, Domain structure and boundary in single-layer graphene grown on Cu (111) and Cu (100) films, J. Phys. Chem. Lett., 3, 219, 10.1021/jz2015555 Ismach, 2010, Direct chemical vapor deposition of graphene on dielectric surfaces, Nano Lett., 10, 1542, 10.1021/nl9037714 Roth, 2013, Chemical vapor deposition and characterization of aligned and incommensurate graphene/hexagonal boron nitride heterostack on Cu(111), Nano Lett., 13, 2668, 10.1021/nl400815w Wang, 2013, A platform for large-scale graphene electronics – CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride, Adv. Mater., 25, 2746, 10.1002/adma.201204904 Tang, 2012, Nucleation and growth of single crystal graphene on hexagonal boron nitride, Carbon, 50, 329, 10.1016/j.carbon.2011.07.062 Yang, 2013, Epitaxial growth of single-domain graphene on hexagonal boron nitride, Nat. Mater., 12, 792, 10.1038/nmat3695 Tang, 2013, Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition, Sci. Rep., 3, 3266, 10.1038/srep02666 Ci, 2010, Atomic layers of hybridized boron nitride and graphene domain, Nat. Mater., 9, 430, 10.1038/nmat2711 Liu, 2013, In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes, Nat. Nanotechnol., 8, 119, 10.1038/nnano.2012.256 Liu, 2011, Direct growth of graphene/hexagonal boron nitride stacked layers, Nano Lett., 11, 2032, 10.1021/nl200464j Sutter, 2013, Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric films, Nano Lett., 13, 276, 10.1021/nl304080y Meric, 2013, Graphene field-effect transistors based on boron-nitride dielectrics, Proc. IEEE, 101, 1609, 10.1109/JPROC.2013.2257634 Ju, 2014, Photoinduced doping in heterostructures of graphene and boron nitride, Nat. Nanotechnol., 9, 348, 10.1038/nnano.2014.60 Yankowitz, 2012, Emergence of superlattice Dirac points in graphene on hexagonal boron nitride, Nat. Phys., 8, 382, 10.1038/nphys2272 Dean, 2013, Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices, Nature, 497, 598, 10.1038/nature12186 Chen, 2014, Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures, Nat. Commun., 5, 4461, 10.1038/ncomms5461 Woods, 2014, Commensurate–incommensurate transition in graphene on hexagonal boron nitride, Nat. Phys., 10, 451, 10.1038/nphys2954 Ponomarenko, 2013, Cloning of Dirac fermions in graphene superlattices, Nature, 497, 594, 10.1038/nature12187 Cocco, 2010, Gap opening in graphene by shear strain, Phys. Rev. B, 81, 241412R, 10.1103/PhysRevB.81.241412 Robertson, 2006, High dielectric constant gate oxides for metal oxide Si transistors, Rep. Prog. Phys., 69, 327, 10.1088/0034-4885/69/2/R02 Farmer, 2009, Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors, Nano Lett., 9, 4474, 10.1021/nl902788u Addou, 2013, Growth of a two-dimensional dielectric monolayer on quasi-freestanding graphene, Nat. Nanotechnol., 8, 41, 10.1038/nnano.2012.217 Dahal, 2013, Preparation and characterization of Ni(111)/graphene/Y2O3(111) heterostructures, J. Appl. Phys., 113, 194305, 10.1063/1.4805042 Kang, 2013, Band offsets and heterostructures of two-dimensional semiconductors, Appl. Phys. Lett., 102, 012111, 10.1063/1.4774090 Polman, 2012, Photonic design principles for ultrahigh-efficiency photovoltaics, Nat. Mater., 11, 174, 10.1038/nmat3263 Ganatra, 2014, Few-layer MoS2: a promising layered semiconductor, ACS Nano, 8, 4074, 10.1021/nn405938z Terrones, 2013, Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides, Sci. Rep., 3, 1549, 10.1038/srep01549 Lu, 2014, Van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation, Nanoscale, 6, 4566, 10.1039/c4nr00783b Kang, 2013, Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures, Nano Lett., 13, 5485, 10.1021/nl4030648 Fang, 2014, Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl. Acad. Sci. USA, 111, 6198, 10.1073/pnas.1405435111 Ling, 2014, Role of the seeding promoter in MoS2 growth by chemical vapor deposition, Nano Lett., 14, 464, 10.1021/nl4033704 Gong, 2014, Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide, Nano Lett., 14, 442, 10.1021/nl4032296 Wang, 2014, Chemical vapor deposition growth of crystalline monolayer MoSe2, ACS Nano, 8, 5125, 10.1021/nn501175k Zhang, 2014, Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy, Nano Lett., 14, 3047, 10.1021/nl501000k Editorial, Nat. Mater. 11 (2012) 9. Zhou, 2014, Engineering topological surface states and Giant Rashba spin splitting in BiTeI/Bi2Te3 heterostructures, Sci. Rep., 4, 3841, 10.1038/srep03841 Zhang, 2014, Proximity effect in graphene–topological-insulator heterostructures, Phys. Rev. Lett., 112, 096802, 10.1103/PhysRevLett.112.096802 Hong, 2014, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures, Nat. Nanotechnol., 9, 682, 10.1038/nnano.2014.167 Furchi, 2014, Photovoltaic effect in an electrically tunable van der Waals heterojunction, Nano Lett., 14, 4785, 10.1021/nl501962c Roy, 2014, Field-effect transistors built from all two-dimensional material components, ACS Nano, 8, 6259, 10.1021/nn501723y Shim, 2014, Large-area single-layer MoSe2 and its van der Waals heterostructures, ACS Nano, 8, 6655, 10.1021/nn405685j Wang, 2013, One-dimensional electrical contact to a two-dimensional material, Science, 342, 614, 10.1126/science.1244358