Minocycline reduces reactive gliosis in the rat model of hydrocephalus

Springer Science and Business Media LLC - Tập 13 - Trang 1-8 - 2012
Hao Xu1,2, Guowei Tan1,3, Shaolin Zhang1,2, Hongwei Zhu1, Feng Liu1, Caiquan Huang1, Feifei Zhang1, Zhanxiang Wang1
1Department of Neurosurgery, First Affiliate Hospital of Xiamen University, Xiamen, China
2Medical College of Xiamen University, Xiamen, China
3School of Life Science, Xiamen University, Xiamen, China

Tóm tắt

Reactive gliosis had been implicated in injury and recovery patterns associated with hydrocephalus. Our aim is to determine the efficacy of minocycline, an antibiotic known for its anti-inflammatory properties, to reduce reactive gliosis and inhibit the development of hydrocephalus. The ventricular dilatation were evaluated by MRI at 1-week post drugs treated, while GFAP and Iba-1were detected by RT-PCR, Immunohistochemistry and Western blot. The expression of GFAP and Iba-1 was significantly higher in hydrocephalic group compared with saline control group (p < 0.05). Minocycline treatment of hydrocephalic animals reduced the expression of GFAP and Iba-1 significantly (p < 0.05). Likewise, the severity of ventricular dilatation is lower in minocycline treated hydrocephalic animals compared with the no minocycline group (p < 0.05). Minocycline treatment is effective in reducing the gliosis and delaying the development of hydrocephalus with prospective to be the auxiliary therapeutic method of hydrocephalus.

Tài liệu tham khảo

Mangano FT, McAllister JP, Jones HC, Johnson MJ, Kriebel RM: The microglial response to progressive hydrocephalus in a model of inherited aqueductal stenosis. Neurol Res. 1998, 20: 697-704. Khan OH, Enno TL, Del Bigio MR: Brain damage in neonatal rats following kaolin induction of hydrocephalus. ExpNeurol. 2006, 200 (2): 311-320. Miller JM, Kumar R, McAllister JP, Krause GS: Gene expression analysis of the development of congenital hydrocephalus in the H-Tx rat. Brain Res. 2006, 1075: 36-47. 10.1016/j.brainres.2005.12.094. Miller JM, McAllister JP: Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res. 2007, 4: 5-10.1186/1743-8454-4-5. Slobodian I, Krassioukov-Enns D, Del Bigio MR: Protein and synthetic polymer injection for induction of obstructive hydrocephalus in rats. Cerebrospinal Fluid Res. 2007, 4: 9-10.1186/1743-8454-4-9. Deren KE, Packer M, Forsyth J, Milash B, Abdullah OM, Hsu EW, McAllister JP: Reactive astrocytosis, microgliosis and inflammation in rats with neonatal hydrocephalus. ExpNeurol. 2010, 226: 110-119. McAllister JP, Miller JM: Minocycline inhibits glial proliferation in the H-Tx rat model of congenital hydrocephalus. Cerebrospinal Fluid Res. 2010, 27: 7. Yoshida Y, Koya G, Tamayama K, Kumanishi T, Abe S: Development of GFAP-positive cells and reactive changes associated with cystic lesions in HTX rat brain. Neurol Med Chir (Tokyo). 1990, 30 (7): 445-450. 10.2176/nmc.30.445. Aoyama Y, Kinoshita Y, Yokota A, Hamada T: Neuronal damage in hydrocephalus and its restoration by shunt insertion in experimental hydrocephalus: a study involving the neurofilamentimmunostaining method. J Neurosurg. 2006, 104: 332-339. 10.3171/jns.2006.104.2.332. Lopes LS, Slobodian I, DelBigio MR: Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin. ExpNeurol. 2009, 219 (1): 187-196. Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J: Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci. 2001, 21: 2580-2588. Tikka TM, Koistinaho JE: Minocycline provides neuroprotection against n-methyl-d-aspartate neurotoxicity by inhibiting microglia. J Immunol. 2001, 166: 7527-7533. Matsukawa N, Yasuhara T, Hara K, Xu L, Maki M, Yu G, Kaneko Y, Ojika K, Hess DC, Borlongan CV: Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neurosci. 2009, 6: 126. Garwood CJ, Cooper JD, Hanger DP, Noble W: Anti-inflammatory impact of minocycline in a mouse model of tauopathy. Front Psychiatry. 2010, 12: 136. Cai ZY, Yan Y, Chen R: Minocycline reduces astrocytic reactivation and neuroinflammation in the hippocampus of a vascular cognitive impairment rat model. Neurosci Bull. 2010, 26: 28-36. 10.1007/s12264-010-0818-2. Klein NC, Cunha BA: Tetracyclines. Med Clin N Am. 1995, 79: 789-801. Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, Yong VW, Peeling J: Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol. 2003, 53: 731-742. 10.1002/ana.10553. Nagra G, Li J, McAllister JP, Miller J: Impaired lymphatic cerebrospinal fluid absorption in a rat model of kaolin-induced communicating hydrocephalus. Am J PhysiolRegulIntegr Comp Physiol. 2008, 294 (5): R1752-R1759. Wu J, Yang S, Xi G, Fu G, Keep RF, Hua Y: Minocycline reduces intracerebral hemorrhage-induced brain injury. Neurol Res. 2009, 31 (2): 183-188. 10.1179/174313209X385680. Fagan SC, Edwards DJ, Borlongan CV, Xu L, Arora A, Feuerstein G, Hess DC: Optimal delivery of minocycline to the brain: implication for human studies of acute neuroprotection. ExpNeurol. 2004, 186: 248-251. Evans WA: An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neurol Psychiatry. 1942, 47: 931-937. 10.1001/archneurpsyc.1942.02290060069004. Liao CW, Fan CK, Kao TC, Ji DD, Su KE, Lin YH, Cho WL: Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocaracanis in mice. BMC Infect Dis. 2008, 8: 84-10.1186/1471-2334-8-84. Xu H, Zhang SL, Tan GW, Zhu HW, Huang CQ, Zhang FF, Wang ZX: Reactive GliosisandNeuroinflammation in Rats with Communicating Hydrocephalus. Neuroscience. 2012, 218: 317-325. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin-Phenol reagents. J BiolChem. 1951, 193 (1): 265-275. Li J, McAllister JP, Shen Y, Wagshul ME, Miller JM, Egnor MR, Johnston MG, Haacke EM, Walker ML: Communicating hydrocephalus in adult rats with obstruction of the basal cisterns or the cortical subarachnoid space. ExpNeurol. 2008, 211 (2): 351-361. Rekate HL: A consensus on the classification of hydrocephalus: its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Childs NervSyst. 2011, 27 (10): 1535-1541. 10.1007/s00381-011-1558-y. Sofroniew MV: Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009, 32: 638-647. 10.1016/j.tins.2009.08.002. Del Bigio MR, da Silva MC, Drake JM, Tuor UI: Acute and chronic cerebral white matter damage in neonatal hydrocephalus. Can J NeurolSci. 1994, 21: 299-305. Albrechtsen M, Sorensen PS, Gjerris F, Bock E: High cerebrospinal fluid concentration of glial fibrillary acidic protein (GFAP) in patients with normal pressure hydrocephalus. J Neurol Sci. 1985, 70: 269-274. 10.1016/0022-510X(85)90168-6. Tullberg M, Blennow K, Mansson JE, Fredman P, Tisell M, Wikkelso C: Ventricular cerebrospinal fluid neurofilament protein levels decrease in parallel with white matter pathology after shunt surgery in normal pressure hydrocephalus. Eur J Neurol. 2007, 14: 248-254. 10.1111/j.1468-1331.2006.01553.x. Petzold A, Keir G, Kerr M, Kay A, Kitchen N, Smith M, Thompson EJ: Early identification of secondary brain damage in subarachnoid hemorrhage: a role for glial fibrillary acidic protein. J Neurotrauma. 2006, 23: 1179-1184. 10.1089/neu.2006.23.1179. Beems T, Simons KS, Van Geel WJ, De Reus HP, Vos PE, Verbeek MM: Serum- and CSF-concentrations of brain specific proteins in hydrocephalus. ActaNeurochir. 2003, 145: 37-43. Petzold A, Keir G, Green AJE, Giovannoni G, Thompson EJ: An ELISA for glial fibrillary acidic protein. J Immunol Meth. 2004, 287: 169-177. 10.1016/j.jim.2004.01.015. Schipke CG, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H: Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. FASEB J. 2002, 16 (2): 255-257. Ciccarelli R, Di Iorio P, D’Alimonte I, Giuliani P, Florio T, Caciagli F, Middlemiss PJ, Rathbone MP: Cultured astrocyte proliferation induced by extracellular guanosine involves endogenous adenosine and is raised by theco-presence of microglia. Glia. 2000, 29: 202-211. 10.1002/(SICI)1098-1136(20000201)29:3<202::AID-GLIA2>3.0.CO;2-C. John GR, Lee SC, Brosnan CF: Cytokines: Powerful regulators of glial cell activation. Neuroscientist. 2003, 9: 10-22. 10.1177/1073858402239587. Verderio C, Matteoli M: ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-γ. J Immunol. 2001, 166: 6383-6391. Heales SJ, Lam AA, Duncan AJ, Land JM: Neurodegeneration or neuroprotection:the pivotal role of astrocytes. Neurochem Res. 2004, 29: 513-519. Liu B, Hong JS: Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J PharmacolExpTher. 2003, 304: 1-7. Bruce-Keller AJ: Microglial–neuronal interactions in synaptic damage and recovery. J Neurosci Res. 1999, 58: 191-201. 10.1002/(SICI)1097-4547(19991001)58:1<191::AID-JNR17>3.0.CO;2-E. Rennaker RL, Miller J, Tang H, Wilson DA: Minocycline increases quality and longevity of chronic neural recordings. J Neural Eng. 2007, 4 (2): L1-L5. 10.1088/1741-2560/4/2/L01. Ryu JK, Franciosi S, Sattayaprasert P, Kim SU, McLarnon JG: Minocycline inhibits neuronal death and glial activation induced by beta-amyloid peptide in rat hippocampus. Glia. 2004, 48 (1): 85-90. 10.1002/glia.20051. Filipovic R, Zecevic N: Neuroprotective role of minocycline in co-cultures of human fetal neurons and microglia. ExpNeurol. 2008, 211: 41-51. Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG: Microglia potentiate damage to blood–brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke. 2006, 37 (4): 1087-1093. 10.1161/01.STR.0000206281.77178.ac. Padi SS, Kulkarni SK: Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol. 2008, 601 (1–3): 79-87. Wasserman JK, Schlichter LC: Neuron death and inflammation in a rat model of intracerebral hemorrhage: Effects of delayed minocycline treatment. Brain Res. 2007, 1136: 208-218. Siopi E, Cho AH, Homsi S, Croci N, Plotkine M, Marchand-Leroux C, Jafarian-Tehrani M: Minocycline restores sAPPα levels and reduces the late histopathological consequences of traumatic brain injury in mice. J Neurotrauma. 2011, 28 (10): 2135-2143. 10.1089/neu.2010.1738.