Mixed Convection in Vertical Flat and Circular Porous Microchannels

А. А. Авраменко1, Yu.Yu. Kovetska1, Igor V. Shevchuk2, A.I. Tyrinov1, V.I. Shevchuk3
1Institute of Engineering Thermophysics, National Academy of Sciences, Kiev, Ukraine
2Institute of General Mechanical Engineering, TH Köln – University of Applied Sciences, Gummersbach, Germany
3Ruetz System Solutions GmbH, 80807, Munich, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agrawal, A., Prabhu, S.V.: Deduction of slip coefficient in slip and transition regimes from existing cylindrical Couette flow data. Exp. Therm. Fluid Sci. 32, 991–996 (2008)

Assis, O.B.G., Claro, L.C.: Immobilized lysozyme protein on fibrous medium: preliminary results for microfilteration applications. Electron. J. Biotechnol. 6(2), 161–167 (2003)

Avramenko, A.A., Tyrinov, A.I., Shevchuk, I.V.: Slip flow in a microchannel with a rectangular cross section. Theor. Comput. Fluid Dynamics 29(5), 351–371 (2015a)

Avramenko, A.A., Tyrinov, A.I., Shevchuk, I.V.: Theoretical investigation of steady isothermal slip flow in a curved microchannel with a rectangular cross-section and constant radii of wall curvature. Europ. J. Mech.—B/Fluids 54, 87–97 (2015b)

Avramenko, A.A., Tyrinov, A.I., Shevchuk, I.V.: An analytical and numerical study on the start-up flow of slightly rarefied gases in a parallel-plate channel and a pipe. Phys. Fluids 27, 042001 (2015c)

Avramenko, A.A., Tyrinov, A.I., Shevchuk, I.V., Dmitrenko, N.P., Kravchuk, A.V., Shevchuk, V.I.: Mixed convection in a vertical flat microchannel. Int. J. Heat Mass Transf. 106, 1164–1173 (2017a)

Avramenko, A.A., Tyrinov, A.I., Shevchuk, I.V., Dmitrenko, N.P., Kravchuk, A.V., Shevchuk, V.I.: Mixed convection in a vertical circular microchannel. Int. J. Therm. Sci. 121, 1–12 (2017b)

Bazant, M.Z., Squires, T.M.: Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92(6), 066101 (2004)

Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

Biddiss, E., Erickson, D., Li, D.Q.: Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal. Chem. 7(11), 3208–3213 (2004)

Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford (1994)

Brask, A., Goranovic, G., Jensen, M.J., Bruus, H.: A novel electro-osmotic pump design for nonconducting liquids: theoretical analysis of flow rate-pressure characteristics and stability. J. Micromech. Microeng. 15(4), 883–891 (2005)

Çengel, Y.A.: Heat Transfer: A Practical Approach. Higher Education, 2nd edn. McGraw Hill, New York (2002)

Dawood, H.K., Mohammed, H.A., Sidik, N.A.C., Munisamy, K.M., Wahid, M.A.: Forced, natural and mixed-convection heat transfer and fluid flow in annulus: a review. Int. Commun. Heat Mass Transf. 62, 45–57 (2015)

Gad-el-Hak, M.: The fluidmechanics of microdevices—the Freeman scholar lecture. ASME J Fluids Eng 121, 5–33 (1999)

Garg, P., Purohit, G.N., Chaudhary, R.C.: Similarity solution for combined free-forced convection past a vertical porous plate in a porous medium with a convective surface boundary condition. Int. J. Appl. Mech. Eng. 21(4), 827–836 (2016)

Ghodake, D.S., Siddheshwar, R.: Study of convective heat transfer through micro channels with different configurations. Int. J. Curr. Eng. Technol. 4, 1–6 (2016)

Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65(4), 046308 (2002)

Hassanizadeh, S.M.: Theory and Applications of Transport in Porous Media. Springer International Publishing, New York (2017)

He, X., Luo, L.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)

Jha, B.K., Oni, M.O., Aina, B.: Steady fully developed mixed convection flow in a vertical micro-concentric-annulus with heat generating/absorbing fluid: an exact solution. Ain Shams Eng. J. (2016). https://doi.org/10.1016/j.asej.2016.08.005

Kiwi-Minsker, L., Renken, A.: Microstructured reactors for catalytic reactions. Catal. Today 110(2), 2–14 (2005)

Korotcenkov, G.: Porous Silicon: From Formation to Application. Biomedical and Sensor Applications, vol. 2, p. 410. CRC Press, Taylor and Francis Group (2015)

Krastev, V.K., Russo, S., Verdemare, D., Recine, G., Biferale, L., Falcucci, G.: CFD aided optimization of an innovative SCR catalyst design for heavy-duty marine diesel engines. In: AIP Conference Proceedings, vol. 1738, no. 1 (2016)

Liedtke, A.K., Scheiff, F., Bornette, F., Philippe, R., Agar, D.W., Bellefon, C.: Liquid–solid mass transfer for microchannel suspension catalysis in gas–liquid and liquid–liquid segmented flow. Ind. Eng. Chem. Res. 54(17), 4699–4708 (2015)

Liu, C.H., Lin, K.-H., Mai, H.-C., Lin, C.-A.: Thermal boundary conditions for thermal lattice Boltzmann simulations. Comput. Math Appl. 59(7), 2178–2193 (2010)

Malvandi, A., Ganji, D.D.: Mixed convection of alumina/water nanofluid in microchannels using modified Buongiorno’s model in presence of heat source/sink. J. Appl. Fluid Mech. 9(5), 2277–2289 (2016)

Muthaiah, S., Senthil, Kumar M., Sendilvelan, S.: CFD analysis of catalytic converter to reduce particulate matter and achieve limited back pressure in diesel engine. Glob. J. Res. Eng. 10(5), 2–8 (2010)

Nield, D.A., Bejan, A.: Convection in Porous Media, 4th edn. Springer, New York (2013)

Oddy, M.H., Santiago, J.G., Michelsen, J.C.: Electrokinetic instability micromixing. Anal. Chem. 73(5822–583), 2 (2001)

Peng, Y., Shu, C., Chew, Y.T.: A 3D incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity. J. Comput. Physics 193(1), 260–274 (2004)

Rokhforouz, M., Rabbani, A., Ayatollahi, S., Taghikhani, V.: Numerical analysis of heat conduction treated with highly conductive copper oxide nanoparticles in porous media. Spec. Top. Rev. Porous Media: Int. J. 7(2), 149–160 (2016)

Sauret, A., Barney, E.C., Perro, A., Villermaux, E., Stone, H.A.: Clogging by sieving in microchannels: application to the detection of contaminants in colloidal suspensions. Appl. Phys. Lett. 105(7), 074101 (2014). https://doi.org/10.1063/1.4893459

Schaaf, S.A., Chambre, P.L.: Flow of Rarefied Gases. Princeton University Press, Princeton (1961)

Seta, T., Takegoshi, E., Kitano, K., Okui, K.: Thermal lattice Boltzmann model for incompressible flows through porous media. J. Therm. Sci. Technol. 1(2), 90–100 (2006)

Sharipov, F.: Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. Eur. J. Mech. B/Fluids 22, 133–143 (2003)

Sharipov, F., Seleznev, V.: Data on internal rarefied gas flows. J. Phys. Chem. Ref. Data 27, 657–706 (1998)

Shokouhmand, H., Meghdadi Isfahani, A.H., Shirani, E.: Friction and heat transfer coefficient in micro and nano channels filled with porous media for wide range of Knudsen number. Int. Commun. Heat Mass Transf. 37, 890–894 (2010)

Tao, L.N.: On combined free and forced convection in channels. J. Heat Transfer 82(3), 233–238 (1960a)

Tao, L.N.: Heat transfer of combined free and forced convection in circular and sector tubes. Appl. Sci. Res. 9, 357–368 (1960b)

Tyrinov, A.I., Avramenko, A.A., Basok, B.I., Davydenko, B.V.: Modeling of flows in a microchannel based on the Boltzmann lattice equation. J. Eng. Phys. Thermophys. 85(1), 65–72 (2012)

Vafai, K.: Handbook of Porous Media, 3rd edn. CRC Press, Boca Raton (2015)

Wong, P.K., Wang, J.T., Deval, J.H., Ho, C.M.: Electrokinetics in micro devices for biotechnology applications. IEEE/ASME Trans. Mechatron. 9, 366–376 (2004)

Wyss, H.M., Blair, D.L., Morris, J.F., Stone, H.A., Weitz, D.A.: Mechanism for clogging of micro-channels. Phys. Rev. 74, 061402 (2006)

Yang, S., Deng, C.: GaoY. Diesel particulate filter design simulation: a review. Adv. Mech. Eng. 8(3), 1–14 (2016)

Yuranov, L., Renken, A., Kiwi-Minsker, L.: Zeolite/sinteredmetal fibers composites as effective structured catalyst. Appl. Catal. 281(55), 55–60 (2005)

Zhao, J., Yao, J., Zhang, M., Zhang, L., Yang, Y., Sun, H., An, S., Li, A.: Study of gas flow characteristics in tight porous media with a microscale lattice Boltzmann model. Sci. Rep. 6, 32393 (2016)

Zili-Ghedira, L., Gouider, H., Nasrallah, S.B.: Numerical simulation of heat and mass transfer in humidifiers and cooling towers. J. Porous Media 20(1), 19–27 (2017)

Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9(6), 1591–1596 (1997)