Conversion of isothermal and isochronal crystallization in a supercooled liquid through additivity rule

Intermetallics - Tập 86 - Trang 73-79 - 2017
F.X. Bai1,2, J.H. Yao1, Y. Li1
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
2University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China

Tài liệu tham khảo

Scheil, 1935, Anlaufzeit der Austenitumwandlung, Arch. Eisenhüttenwes., 8, 565, 10.1002/srin.193500186 Christian, 2002 Cahn, 1956, Transformation kinetics during continuous cooling, Acta Metall., 4, 572, 10.1016/0001-6160(56)90158-4 Rios, 2005, Relationship between non-isothermal transformation curves and isothermal and non-isothermal kinetics, Acta Mater., 53, 4893, 10.1016/j.actamat.2005.07.005 Kamat, 1992, The principle of additivity and the proeutectoid ferrite transformation, Metall. Trans. A, 23, 2469, 10.1007/BF02658050 Hawbolt, 1985, Kinetics of austenite-ferrite and austenite-pearlite transformations in a 1025 carbon steel, Metall. Trans. A, 16, 565, 10.1007/BF02814230 Hsu, 2005, Additivity hypothesis and effects of stress on phase transformations in steel, Curr. Opin. Solid State Mater. Sci., 9, 256, 10.1016/j.cossms.2006.02.011 Zhu, 2000, Application of, and precautions for the use of, the rule of additivity in phase transformation, Metall. Mater. Trans. B, 31, 675, 10.1007/s11663-000-0106-z Mittemeijer, 1992, Analysis of the kinetics of phase transformations, J. Mater. Sci., 27, 3977, 10.1007/BF01105093 Umemoto, 1983, Pearlite transformation during continuous cooling and its relation to isothermal transformation, Trans. Iron Steel Inst. Jpn., 23, 690, 10.2355/isijinternational1966.23.690 Lusk, 1997, On the rule of additivity in phase transformation kinetics, Metall. Mater. Trans. A, 28, 287, 10.1007/s11661-997-0131-5 Avrami, 1940, Kinetics of phase change. II transformation-time relations for random distribution of nuclei, J. Chem. Phys., 8, 212, 10.1063/1.1750631 Liu, 2007, Additivity rule, isothermal and non-isothermal transformations on the basis of an analytical transformation model, Acta Mater., 55, 5255, 10.1016/j.actamat.2007.05.041 Orava, 2012, Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry, Nat. Mater., 11, 279, 10.1038/nmat3275 Pogatscher, 2014, In-situ probing of metallic glass formation and crystallization upon heating and cooling via fast differential scanning calorimetry, Appl. Phys. Lett., 104, 251908, 10.1063/1.4884940 Pogatscher, 2014, Characterization of bulk metallic glasses via fast differential scanning calorimetry, Thermochim. Acta, 590, 84, 10.1016/j.tca.2014.06.007 Mathot, 2011, The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers, Thermochim. Acta, 522, 36, 10.1016/j.tca.2011.02.031 Zhuravlev, 2010, Fast scanning power compensated differential scanning nano-calorimeter: 1. The device, Thermochim. Acta, 505, 1, 10.1016/j.tca.2010.03.019 Bai, 2017, Crystallization kinetics of an Au-based metallic glass upon ultrafast heating and cooling, Scr. Mater., 132, 58, 10.1016/j.scriptamat.2017.02.001 Schroers, 1999, Pronounced asymmetry in the crystallization behavior during constant heating and cooling of a bulk metallic glass-forming liquid, Phys. Rev. B, 60, 11855, 10.1103/PhysRevB.60.11855 Busch, 2000, The thermophysical properties of bulk metallic glass-forming liquids, JOM-J. Min. Met. Mater. Soc., 52, 39, 10.1007/s11837-000-0160-7 Pham, 1995, Predicting the onset of transformation under noncontinuous cooling conditions .1. Theory, Metall. Mater. Trans. A, 26, 1987, 10.1007/BF02670670 Pham, 1995, Predicting the onset of transformation under noncontinuous cooling conditions: Part II. Application to the austenite pearlite transformation, Metall. Mater. Trans. A, 26, 1993, 10.1007/BF02670671 Agarwal, 1981, Mathematical model of heat flow and austenite-pearlite transformation in eutectoid carbon steel rods for wire, Metall. Trans. B, 121, 10.1007/BF02674765 Todinov, 1998, Alternative approach to the problem of additivity, Metall. Mater. Trans. B, 29, 269, 10.1007/s11663-998-0030-1 Johnson, 1939, Reaction kinetics in processes of nucleation and growth, Trans. Am. Inst. Min. Metall. Eng., 135, 416 Avrami, 1939, Kinetics of phase change I - General theory, J. Chem. Phys., 7, 1103, 10.1063/1.1750380 Avrami, 1941, Phase change, and microstructure kinetics of phase change. Iii, J. Chem. Phys., 9, 177, 10.1063/1.1750872 Kelton, 1991, Crystal nucleation in liquids and glasses, Solid State Phys., 45, 75, 10.1016/S0081-1947(08)60144-7 Liu, 2007, Analysis of solid state phase transformation kinetics: models and recipes, Int. Mater. Rev., 52, 193, 10.1179/174328007X160308 Liu, 2004, An analytical model for isothermal and isochronal transformation kinetics, J. Mater. Sci., 39, 1621, 10.1023/B:JMSC.0000016161.79365.69 Liu, 2004, Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys; application to calorimetric data, Acta Mater., 52, 3207, 10.1016/j.actamat.2004.03.020 Schroers, 2001, Transition from nucleation controlled to growth controlled crystallization in Pd43Ni10Cu27P20 melts, Acta Mater., 49, 2773, 10.1016/S1359-6454(01)00159-8 Bordeenithikasem, 2015, Protocols for multi-step thermoplastic processing of metallic glasses, Scr. Mater, 104, 56, 10.1016/j.scriptamat.2015.03.024 Wierszyllowski, 1991, The effect of the thermal path to reach isothermal temperature on transformation kinetics, Metall. Trans. A, 22, 993, 10.1007/BF02661092