Interpretation of electrical conductivity patterns by soil properties and geological maps for precision agriculture
Tóm tắt
Precision farming needs management rules to apply spatially differentiated treatments in agricultural fields. Digital soil mapping (DSM) tools, for example apparent soil electrical conductivity, corrected to 25°C (EC25), and digital elevation models, try to explain the spatial variation in soil type, soil properties (e.g. clay content), site and crop that are determined by landscape characteristics such as terrain, geology and geomorphology. We examined the use of EC25 maps to delineate management zones, and identified the main factors affecting the spatial pattern of EC25 at the regional scale in a study area in eastern Germany. Data of different types were compared: EC25 maps for 11 fields, soil properties measured in the laboratory, terrain attributes, geological maps and the description of 75 soil profiles. We identified the factors that influence EC25 in the presence of spatial autocorrelation and field-specific random effects with spatial linear mixed-effects models. The variation in EC25 could be explained to a large degree (R
2 of up to 61%). Primarily, soil organic matter and CaCO3, and secondarily clay and the presence of gleyic horizons were significantly related to EC25. Terrain attributes, however, had no significant effect on EC25. The geological map unit showed a significant relationship to EC25, and it was possible to determine the most important soil properties affecting EC25 by interpreting the geological maps. Including information on geology in precision agriculture could improve understanding of EC25 maps. The EC25 maps of fields should not be assumed to represent a map of clay content to form a basis for deriving management zones because other factors appeared to have a more important effect on EC25.
Tài liệu tham khảo
Arbeitsgruppe Boden (2005). Bodenkundliche Kartieranleitung (Soil Survey Instruction, 5th ed., 438 pp). Bundesanstalt für Geowissenschaften und Rohstoffe (Ed.), Hannover, Germany. Stuttgart, Germany: E. Schweizerbart’sche Verlagsbuchhandlung.
Auerswald, K., Simon, S., & Stanjek, H. (2001). Influence of soil properties on electrical conductivity under humid water regimes. Soil Science, 166, 382–390. doi:10.1097/00010694-200106000-00003.
Auerswald, K., Sippel, R., Kainz, M., Demmel, M., Scheinost, A. C., Sinowski, W., et al. (1997). The crop response to soil variability in an agroecosystem. Advances in Geoecology, 30, 39–53.
Basso, B., Ritchie, J. T., Pierce, F. J., Braga, R. P., & Jones, J. W. (2001). Spatial validation of crop models for precision agriculture. Agricultural Systems, 68, 97–112. doi:10.1016/S0308-521X(00)00063-9.
Behrens, T., & Scholten, T. (2006). Digital soil mapping in Germany—a review. Journal of Plant Nutrition and Soil Science, 169, 434–443. doi:10.1002/jpln.200521962.
Böhner, J., & Selige, T. (2006). Spatial prediction of soil attributes using terrain analysis and climate regionalisation. In J. Böhner, K. R. McCloy, & J. Strobl (Eds.), SAGA—analyses and modelling applications. Göttinger Geographische Abhandlungen, 115 (pp. 13–28 and 118–120). Göttingen, Germany: Verlag Goltze.
Brenning, A., Koszinski, S., & Sommer, M. (2008). Geostatistical homogenization of soil conductivity across field boundaries. Geoderma, 143, 254–260. doi:10.1016/j.geoderma.2007.11.007.
Bronson, K. F., Booker, J. D., Officer, S. J., Lascano, R. J., Maas, S. J., Searcy, S. W., et al. (2005). Apparent electrical conductivity, soil properties and spatial covariance in the U.S. Southern high planes. Precision Agriculture, 6, 297–311. doi:10.1007/s11119-005-1388-6.
Carré, F., & McBratney, A. B. (2005). Digital terron mapping. Geoderma, 128, 340–353. doi:10.1016/j.geoderma.2005.04.012.
Carroll, Z. L., & Oliver, M. A. (2005). Exploring the spatial relations between soil physical properties and apparent electrical conductivity. Geoderma, 128, 354–373. doi:10.1016/j.geoderma.2005.03.008.
Cockx, L., Van Meirvenne, M., & De Vos, B. (2006). Using the EM38DD soil sensor to delineate clay lenses in a sandy forest soil. Soil Science Society of America Journal, 71, 1314–1322. doi:10.2136/sssaj2006.0323.
Cressie, N. A. C. (1993). Statistics for spatial data. New York, USA: Wiley, 928 pp.
Dalgaard, M., & Have, H. (2001). Soil clay mapping by measurement of electromagnetic conductivity. In A. Werner & A. Jarfe (Eds.), Programme book of the joint conference of ECPA-ECPLF (pp. 367–372). Wageningen, Netherlands: Academic Publishers.
Deutscher Wetterdienst (Ed.). (1999). Klimaatlas Bundesrepublik Deutschland. Teil 1. Lufttemperatur, Niederschlagshöhe, Sonnenscheindauer (Climate Atlas of Germany. Part 1. Air Temperature, Precipitation, Sunshine, 23 pp., 57 maps). Offenbach/M., Germany.
Domsch, H., & Giebel, A. (2004). Estimation of soil textural features from soil electrical conductivity recorded using the EM38. Precision Agriculture, 5, 389–409. doi:10.1023/B:PRAG.0000040807.18932.80.
Durlesser, H. (1999). Bestimmung der Variation bodenphysikalischer Parameter in Raum und Zeit mit elektromagnetischen Induktionsverfahren (Determination of soil physical properties variation in space and time using electromagnetic induction methods). PhD. Thesis, Technical University of Munich, Munich, Germany. FAM-Bericht, 35. Aachen, Germany: Shaker Verlag, 120 pp.
Heil, K., & Schmidhalter, U. (2003). Derivation of soil texture and soil water content from electromagnetic induction measurements. In A. Werner & A. Jarfe (Eds.), Programme book of the joint conference of ECPA-ECPLF (pp. 429–430). Wageningen, Netherlands: Academic Publishers.
IUSS Working Group WRB. (2006). World reference base for soil resources 2006—a framework for international classification, correlation and communication. World Soil Resources Reports 103. Rome, Italy: FAO, 128 pp.
Königlich Preußische Geologische Landesanstalt (Ed.). (1913a). Geologische Karte von Preußen und benachbarten Bundesstaaten 1:25.000, Blatt Wulfen 4137 (Geological map of Prussia and adjacent federal states 1:25,000, Sheet Wulfen 4137). Berlin, Germany.
Königlich Preußische Geologische Landesanstalt (Ed.). (1913b). Geologische Karte von Preußen und benachbarten Bundesstaaten 1:25.000, Blatt Cöthen 4237 (Geological map of Prussia and adjacent federal states 1:25,000, Sheet Cöthen 4237). Berlin, Germany.
Korsaeth, A. (2005). Soil apparent electrical conductivity (ECa) as a means of monitoring changes in soil organic N on heterogeneous morainic soils in SE Norway during two growing seasons. Nutrient Cycling in Agroecosystems, 72, 213–227. doi:10.1007/s10705-005-1668-6.
Lagacherie, P., & McBratney, A. B. (2007). Spatial soil information systems and spatial soil inference systems: Perspectives for digital soil mapping. In P. Lagacherie, A. B. McBratney, & M. Voltz (Eds.), Digital soil mapping, an introductory perspective. Developments in Soil Science 31 (pp. 3–22). Amsterdam, Netherlands: Elsevier.
Lagacherie, P., McBratney, A. B., & Voltz, M. (Eds.). (2007). Digital soil mapping. An introductory perspective (600 pp, 41 Color Plates). Developments in Soil Science 31. Amsterdam, Netherlands: Elsevier.
Lagacherie, P., & Voltz, M. (2000). Predicting soil properties over a region using sample information from a mapped reference area and digital elevation data: A conditional probability approach. Geoderma, 97, 187–208. doi:10.1016/S0016-7061(00)00038-0.
Maidl, F.-X., Brunner, R., Sticksel, E., & Fischbeck, G. (1999). Ursachen kleinräumiger Ertragsschwankungen im bayerischen Tertiärhügelland und Folgerungen für eine teilschlagbezogene Düngung (Site effects of small-scale yield variation in the Tertiary hills north of Munich (Germany) and conclusions for site specific farming). Journal of Plant Nutrition and Soil Science, 162, 337–342. doi:10.1002/(SICI)1522-2624(199906)162:3<337::AID-JPLN337>3.0.CO;2-2. with English abstract.
McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117, 3–52. doi:10.1016/S0016-7061(03)00223-4.
McBratney, A. B., Minasny, B., & Whelan, B. M. (2005). Obtaining ‘useful’ high-resolution soil data from proximally-sensed electrical conductivity/resistivity (PSEC/R) surveys. In J. V. Stafford (Ed.), Precision agriculture ‘05 (pp. 503–510). Wageningen, Netherlands: Wageningen Academic Publishers.
McBratney, A. B., Odeh, I. O. A., Bishop, T. F. A., Dunbar, M. S., & Shatar, T. M. (2000). An overview of pedometric techniques for use in soil survey. Geoderma, 97, 293–327. doi:10.1016/S0016-7061(00)00043-4.
McBride, R. A., Gordon, A. M., & Shrive, S. C. (1990). Estimating forest soil quality from terrain measurements of apparent electrical conductivity. Soil Science Society of America Journal, 54, 290–293.
McNeill, J. D. (1980a). Electrical conductivity of soils and rocks. Technical Note TN-5. Mississauga, Ontario, Canada: Geonics Limited, 22 pp.
McNeill, J. D. (1980b). Electromagnetic terrain conductivity measurement at low induction numbers. Technical Note TN-6. Mississauga, Ontario, Canada: Geonics Limited, 17 pp.
McNeill, J. D. (1992). Rapid, accurate mapping of soil salinity by electromagnetic ground conductivity meters. In G. C. Topp, W. D. Reynolds, & R. E. Green (Eds.), Advances in measurement of soil physical properties. Bringing theory into practice (pp. 209–229). SSSA Special Publication No. 30. Madison, Wisconsin, USA: Soil Science Society of America.
Moran, M. S., Inoue, Y., & Barnes, E. M. (1997). Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment, 61, 319–346. doi:10.1016/S0034-4257(97)00045-X.
Normenausschuss Wasserwesen (NAW) im DIN Deutsches Institut für Normung e.V. (2002). Bodenbeschaffenheit. Bestimmung der Partikelgrößenverteilung in Mineralböden. Verfahren mittels Siebung und Sedimentation (Soil texture. Determination of particle size distribution in mineral soil. Methods by sieving and sedimentation). DIN ISO 11277. Ref. Nr. DIN ISO 11277:2002–08. Berlin, Germany: DIN Deutsches Institut für Normung e.V., 25 pp.
Pinheiro, J. C., & Bates, D. M. (2004). Mixed-effects models in S and S-PLUS. New York, USA: Springer, 528 pp.
R Development Core Team. (2006). R. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.
Scheffer, F., & Schachtschabel, P. (2002). Lehrbuch der Bodenkunde (Textbook of soil science) (15th ed.). Heidelberg, Germany: Spektrum Verlag, 593 pp.
Schlichting, E., Blume, H.-P., & Stahr, K. (1995). Bodenkundliches Praktikum. Eine Einführung in pedologisches Arbeiten für Ökologen, insbesondere Land– und Forstwirte, und für Geowissenschaftler (Practicing soil science. An introduction to pedological working for ecologists, especially agriculturists and foresters, and for earth scientists, 2nd ed.). Berlin, Germany: Blackwell Verlag, 295 pp.
Shatar, T. M., & McBratney, A. B. (1999). Empirical modeling of relationships between sorghum yield and soil properties. Precision Agriculture, 1, 249–276. doi:10.1023/A:1009968907612.
Siri-Prieto, G., Reeves, D. W., Shaw, J. N., & Mitchell, C. C. (2006). World’s oldest cotton experiment: Relationships between soil chemical and physical properties and apparent electrical conductivity. Communications in Soil Science and Plant Analysis, 37, 767–786. doi:10.1080/00103620600564018.
Sommer, M. (2006). Influence of soil pattern on matter transport in and from terrestrial biogeosystems—a new concept for landscape pedology. Geoderma, 133, 107–123. doi:10.1016/j.geoderma.2006.03.040.
Sommer, M., & Schlichting, E. (1997). Archetypes of catenas in respect to matter—a concept for structuring and grouping catenas. Geoderma, 76, 1–33. doi:10.1016/S0016-7061(96)00095-X.
Sommer, M., Wehrhan, M., Zipprich, M., Weller, U., zu Castell, W., Ehrich, S., et al. (2003). Hierarchical data fusion for mapping soil units at field scale. Geoderma, 112, 179–196. doi:10.1016/S0016-7061(02)00305-1.
Sudduth, K. A., Drummond, S. T., & Kitchen, N. R. (2001). Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Computers and Electronics in Agriculture, 31, 239–264. doi:10.1016/S0168-1699(00)00185-X.
Sudduth, K. A., Kitchen, N. R., Wiebold, W. J., Batchelor, W. D., Bollero, G. A., Bullock, D. G., et al. (2005). Relating apparent electrical conductivity to soil properties across the North-central USA. Computers and Electronics in Agriculture, 46, 263–283. doi:10.1016/j.compag.2004.11.010.
Vitharana, U. W. A., Van Meirvenne, M., Simpson, D., Cockx, L., & De Baerdemaeker, J. (2008). Key soil and topographic properties to delineate potential management classes for precision agriculture in the European loess area. Geoderma, 143, 206–215. doi:10.1016/j.geoderma.2007.11.003.
Walter, C., Lagacherie, P., & Follain, S. (2007). Integrating pedological knowledge into digital soil mapping. In P. Lagacherie, A. B. McBratney, & M. Voltz (Eds.), Digital soil mapping, an introductory perspective (pp. 281–300). Amsterdam, Netherlands: Elsevier. Developments in Soil Science 31.
Walter, H., & Lieth, H. (1964). Klimadiagramm-Weltatlas, 2. Lieferung (World atlas of climate diagrams, second part). Jena, Germany: VEB Gustav Fischer.
Weller, U., Zipprich, M., Sommer, M., Zu Castell, W., & Wehrhan, M. (2007). Mapping clay content across boundaries at the landscape scale with electromagnetic induction. Soil Science Society of America Journal, 71, 1740–1747. doi:10.2136/sssaj2006.0177.