Speed up grid-search for parameter selection of support vector machines

Applied Soft Computing - Tập 80 - Trang 202-210 - 2019
Hatem A. Fayed1,2, Amir F. Atiya3
1Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University, Cairo 12613, Egypt
2University of Science and Technology, Mathematics Program, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
3Department of Computer Engineering, Faculty of Engineering, Cairo University, Cairo 12613, Egypt

Tài liệu tham khảo

Cortes, 1995, Support-vector networks, Mach. Learn., 20, 273, 10.1007/BF00994018 Vapnik, 1998 Vapnik, 1999 Scholkopf, 2001 Chapelle, 2002, Choosing multiple parameters for support vector machines, Mach. Learn., 46, 131, 10.1023/A:1012450327387 Keerthi, 2002, Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms, IEEE Trans. Neural Netw., 13, 1225, 10.1109/TNN.2002.1031955 Bakir, 2004, Breaking SVM complexity with cross-training, 81 Hastie, 2004, The entire regularization path for the support vector machine, J. Mach. Learn. Res., 5, 1391 Keerthi, 2007, An efficient method for gradient-based adaptation of hyperparameters in SVM models, 673 Li, 2010, Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm, Neurocomputing, 73, 2089, 10.1016/j.neucom.2010.02.013 Krueger, 2015, Fast cross-validation via sequential testing, J. Mach. Learn. Res., 16, 1103 Duan, 2003, Evaluation of simple performance measures for tuning SVM hyperparameters, Neurocomputing, 51, 41, 10.1016/S0925-2312(02)00601-X Gold, 2003, Model selection for support vector machine classification, Neurocomputing, 55, 221, 10.1016/S0925-2312(03)00375-8 Adankon, 2007, Optimizing resources in model selection for support vector machine, Pattern Recognit., 40, 953, 10.1016/j.patcog.2006.06.012 F. Imbault, K. Lebart, A stochastic optimization approach for parameter tuning of support vector machines, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 4, 2004, pp. 597–600. Huang, 2006, A GA-based feature selection and parameters optimization for support vector machines, Expert Syst. Appl., 31, 231, 10.1016/j.eswa.2005.09.024 Friedrichs, 2005, Evolutionary tuning of multiple SVM parameters, Neurocomputing, 64, 107, 10.1016/j.neucom.2004.11.022 Guo, 2008, A novel LS-SVMs hyper-parameter selection based on particle swarm optimization, Neurocomputing, 71, 3211, 10.1016/j.neucom.2008.04.027 Huang, 2008, A distributed PSO-SVM hybrid system with feature selection and parameter optimization, Appl. Soft Comput., 8, 1381, 10.1016/j.asoc.2007.10.007 Escalante, 2009, Particle swarm model selection, J. Mach. Learn. Res., 10, 405 Lin, 2008, Particle swarm optimization for parameter determination and feature selection of support vector machines, Expert Syst. Appl., 35, 1817, 10.1016/j.eswa.2007.08.088 Zhang, 2015, Support vector machine with parameter optimization by a novel hybrid method and its application to fault diagnosis, Neurocomputing, 149, 641, 10.1016/j.neucom.2014.08.010 Huang, 2009, ACO-Based hybrid classification system with feature subset selection and model parameters optimization, Neurocomputing, 73, 438, 10.1016/j.neucom.2009.07.014 Zhang, 2010, An ACO-based algorithm for parameter optimization of support vector machines, Expert Syst. Appl., 37, 6618, 10.1016/j.eswa.2010.03.067 Ilhan, 2011, A multi-objective artificial immune algorithm for parameter optimization in support vector machine, Appl. Soft Comput., 11, 120, 10.1016/j.asoc.2009.11.003 Lin, 2008, Parameter determination of support vector machine and feature selection using simulated annealing approach, Appl. Soft Comput., 8, 1505, 10.1016/j.asoc.2007.10.012 -wei Hsu, 2010 Wu, 2009, Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space, Pattern Recognit., 42, 710, 10.1016/j.patcog.2008.08.030 J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE International Conference on Neural Networks, 1995, pp. 1942–1948. Chang, 2011, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol., 2, 27:1, 10.1145/1961189.1961199