Speed up grid-search for parameter selection of support vector machines
Tài liệu tham khảo
Cortes, 1995, Support-vector networks, Mach. Learn., 20, 273, 10.1007/BF00994018
Vapnik, 1998
Vapnik, 1999
Scholkopf, 2001
Chapelle, 2002, Choosing multiple parameters for support vector machines, Mach. Learn., 46, 131, 10.1023/A:1012450327387
Keerthi, 2002, Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms, IEEE Trans. Neural Netw., 13, 1225, 10.1109/TNN.2002.1031955
Bakir, 2004, Breaking SVM complexity with cross-training, 81
Hastie, 2004, The entire regularization path for the support vector machine, J. Mach. Learn. Res., 5, 1391
Keerthi, 2007, An efficient method for gradient-based adaptation of hyperparameters in SVM models, 673
Li, 2010, Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm, Neurocomputing, 73, 2089, 10.1016/j.neucom.2010.02.013
Krueger, 2015, Fast cross-validation via sequential testing, J. Mach. Learn. Res., 16, 1103
Duan, 2003, Evaluation of simple performance measures for tuning SVM hyperparameters, Neurocomputing, 51, 41, 10.1016/S0925-2312(02)00601-X
Gold, 2003, Model selection for support vector machine classification, Neurocomputing, 55, 221, 10.1016/S0925-2312(03)00375-8
Adankon, 2007, Optimizing resources in model selection for support vector machine, Pattern Recognit., 40, 953, 10.1016/j.patcog.2006.06.012
F. Imbault, K. Lebart, A stochastic optimization approach for parameter tuning of support vector machines, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 4, 2004, pp. 597–600.
Huang, 2006, A GA-based feature selection and parameters optimization for support vector machines, Expert Syst. Appl., 31, 231, 10.1016/j.eswa.2005.09.024
Friedrichs, 2005, Evolutionary tuning of multiple SVM parameters, Neurocomputing, 64, 107, 10.1016/j.neucom.2004.11.022
Guo, 2008, A novel LS-SVMs hyper-parameter selection based on particle swarm optimization, Neurocomputing, 71, 3211, 10.1016/j.neucom.2008.04.027
Huang, 2008, A distributed PSO-SVM hybrid system with feature selection and parameter optimization, Appl. Soft Comput., 8, 1381, 10.1016/j.asoc.2007.10.007
Escalante, 2009, Particle swarm model selection, J. Mach. Learn. Res., 10, 405
Lin, 2008, Particle swarm optimization for parameter determination and feature selection of support vector machines, Expert Syst. Appl., 35, 1817, 10.1016/j.eswa.2007.08.088
Zhang, 2015, Support vector machine with parameter optimization by a novel hybrid method and its application to fault diagnosis, Neurocomputing, 149, 641, 10.1016/j.neucom.2014.08.010
Huang, 2009, ACO-Based hybrid classification system with feature subset selection and model parameters optimization, Neurocomputing, 73, 438, 10.1016/j.neucom.2009.07.014
Zhang, 2010, An ACO-based algorithm for parameter optimization of support vector machines, Expert Syst. Appl., 37, 6618, 10.1016/j.eswa.2010.03.067
Ilhan, 2011, A multi-objective artificial immune algorithm for parameter optimization in support vector machine, Appl. Soft Comput., 11, 120, 10.1016/j.asoc.2009.11.003
Lin, 2008, Parameter determination of support vector machine and feature selection using simulated annealing approach, Appl. Soft Comput., 8, 1505, 10.1016/j.asoc.2007.10.012
-wei Hsu, 2010
Wu, 2009, Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space, Pattern Recognit., 42, 710, 10.1016/j.patcog.2008.08.030
J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.
Chang, 2011, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol., 2, 27:1, 10.1145/1961189.1961199