A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING
Tóm tắt
Từ khóa
Tài liệu tham khảo
Henikoff, S., Till, B.J. & Comai, L. TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol. 135, 630–636 (2004).
Colbert, T. et al. High-throughput screening for induced point mutations. Plant Physiol. 126, 480–484 (2001).
McCallum, C.M., Comai, L., Greene, E.A. & Henikoff, S. Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol. 123, 439–442 (2000).
Oleykowski, C.A., Bronson Mullins, C.R., Godwin, A.K. & Yeung, A.T. Mutation detection using a novel plant endonuclease. Nucleic Acids Res. 26, 4597–4602 (1998).
Wienholds, E. et al. Efficient target-selected mutagenesis in zebrafish. Genome Res. 13, 2700–2707 (2003).
Perry, J.A. et al. A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol. 131, 866–871 (2003).
Smits, B.M., Van Zutphen, B.F., Plasterk, R.H. & Cuppen, E. Genetic variation in coding regions between and within commonly used inbred rat strains. Genome Res. 14, 1285–1290 (2004).
Nakamura, T., Yamamori, M., Hirano, H. & Hidaka, S. Identification of three Wx proteins in wheat (Triticum aestivum L.). Biochem. Genet. 31, 75–86 (1993).
Yamamori, M., Nakamura, T., Endo, T.R. & Nagamine, T. Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theor. Appl. Genet. 89, 179–184 (1994).
Burrell, M.M. Starch: the need for improved quality or quantity—an overview. J. Exp. Bot. 54, 451–456 (2003).
Graybosch, R.A. Waxy wheats: origin, properties, and prospects. Trends Food Sci. Technol. 9, 135–142 (1998).
Nakamura, T., Yamamori, M., Hirano, H., Hidaka, S. & Nagamine, T. Production of waxy (amylose-free) wheats. Mol. Gen. Genet. 248, 253–259 (1995).
Greene, E.A. et al. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164, 731–740 (2003).
Stadler, L.J. Chromosome number and the mutation rate in Avena and Triticum. Proc. Natl. Acad. Sci. USA 12, 876–881 (1929).
Nakamura, T., Vrinten, P., Saito, M. & Konda, M. Rapid classification of partial waxy wheats using PCR-based markers. Genome 45, 1150–1156 (2002).
Saito, M., Konda, M., Vrinten, P., Nakamura, K. & Nakamura, T. Molecular comparison of waxy null alleles in common wheat and identification of a unique null allele. Theor. Appl. Genet. 108, 1205–1211 (2004).
Ng, P.C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).
Henikoff, J.G. & Henikoff, S. Using substitution probabilities to improve position-specific scoring matrices. Comput. Appl. Biosci. 12, 135–143 (1996).
Taylor, N.E. & Greene, E.A. PARSESNP: A tool for the analysis of nucleotide polymorphisms. Nucleic Acids Res. 31, 3808–3811 (2003).
Yamamori, M., Nakamura, T. & Kiribuchi-Otobe, C. Waxy protein alleles in common and emmer wheat germplasm. Misc. Publ. Natl. Inst. Agrobiol. Resources 12, 57–104 (1998).
Rodriguez-Quijano, M., Nieto-Taladriz, M.T. & Carrillo, J.M. Polymorphism of waxy proteins in Iberian hexaploid wheats. Plant Breeding 117, 341–344 (1998).
Marcoz-Ragot, C., Gateau, I., Koenig, J., Delaire, V. & Branlard, G. Allelic variants of granule-bound starch synthase proteins in European bread wheat varieties. Plant Breeding 119, 305–309 (2000).
Demeke, T., Hucl, P., Nair, R.B., Nakamura, T. & Chibbar, R.N. Evaluation of Canadian and other wheats for waxy proteins. Cereal Chemistry 74, 442–444 (1997).
Shariflou, M.R., Hassani, M.E. & Sharp, P.J. A PCR-based DNA marker for detection of mutant and normal alleles of the Wx-D1 gene of wheat. Plant Breeding 120, 121–124 (2001).
Miura, H., Araki, E. & Tarui, S. Amylose synthesis capacity of the three Wx genes of wheat cv. Chinese Spring. Euphytica 108, 91–95 (1999).
Miura, H., Wickramasinghe, M.H.A., Subasinghe, R.M., Araki, E. & Komae, K. Development of near-isogenic lines of wheat carrying different null Wx alleles and their starch properties. Euphytica 123, 353–359 (2002).
Graybosch, R.A., Souza, E., Berzonsky, W., Baenziger, P.S. & Chung, O. Functional properties of waxy wheat flours: genotypic and environmental effects. J. Cereal Sci. 38, 69–76 (2003).
Mochida, K., Yamazaki, Y. & Ogihara, Y. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol. Genet. Genomics 270, 371–377 (2003).
Yan, L. et al. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644 (2004).
Hucl, P. & Matus-Cádiz, M. Isolation distances for minimizing out-crossing in spring wheat. Crop Sci. 41, 1348–1351 (2001).
Neff, M.M., Turk, E. & Kalishman, M. Web-based primer design for single nucleotide polymorphism analysis. Trends Genet. 18, 613–615 (2002).
Konieczny, A. & Ausubel, F.M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific markers. Plant J. 4, 403–410 (1993).
Ahloowalia, B.S., Maluszynski, M. & Nichterlein, K. Global impact of mutation-derived varieties. Euphytica 135, 187–204 (2004).
Ahn, S., Anderson, J.A., Sorrells, M.E. & Tanksley, S.D. Homoeologous relationships of rice, wheat, and maize chromosomes. Mol. Gen. Genet. 243, 483–490 (1993).
Gale, M.D. & Devos, K.M. Comparative genetics in the grasses. Proc. Natl. Acad. Sci. USA 95, 1971–1974 (1998).
Sorrells, M.E. et al. Comparative DNA sequence analysis of wheat and rice genomes. Genome Res. 13, 1818–1827 (2003).
Moore, G., Devos, K.M., Wang, Z. & Gale, M.D. Cereal genome evolution. Grasses, line up and form a circle. Curr. Biol. 5, 737–739 (1995).
Murai, J., Taira, T. & Ohta, D. Isolation and characterization of the three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat. Gene 234, 71–79 (1999).
R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2004).