SWISS-MODEL: homology modelling of protein structures and complexes

Nucleic Acids Research - Tập 46 Số W1 - Trang W296-W303 - 2018
Andrew Waterhouse1,2, Martino Bertoni1,2, Stefan Bienert1,2, Gabriel Studer1,2, Gerardo Tauriello1,2, Rafal Gumienny1,2, Florian Heer1,2, Tjaart de Beer1,2, Christine Rempfer1,2, Lorenza Bordoli1,2, Rosalba Lepore1,2, Torsten Schwede1,2
1Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
2SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50–70, CH-4056 Basel, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fuller, 2009, Predicting druggable binding sites at the protein-protein interface, Drug Discov. Today, 14, 155, 10.1016/j.drudis.2008.10.009

Nim, 2016, Pooled screening for antiproliferative inhibitors of protein-protein interactions, Nat. Chem. Biol., 12, 275, 10.1038/nchembio.2026

Dutta, 2005, Large macromolecular complexes in the Protein Data Bank: a status report, Structure, 13, 381, 10.1016/j.str.2005.01.008

Marsh, 2015, Structure, dynamics, assembly, and evolution of protein complexes, Annu. Rev. Biochem., 84, 551, 10.1146/annurev-biochem-060614-034142

Tramontano, 2017, The computational prediction of protein assemblies, Curr. Opin. Struct. Biol., 46, 170, 10.1016/j.sbi.2017.10.006

Pazos, 1997, Correlated mutations contain information about protein-protein interaction, J. Mol. Biol., 271, 511, 10.1006/jmbi.1997.1198

Hopf, 2014, Sequence co-evolution gives 3D contacts and structures of protein complexes, eLife, 3, e03430, 10.7554/eLife.03430

Morris, 2008, Molecular docking, Methods Mol. Biol., 443, 365, 10.1007/978-1-59745-177-2_19

Chaudhury, 2011, Benchmarking and analysis of protein docking performance in Rosetta v3.2, PLoS One, 6, e22477, 10.1371/journal.pone.0022477

Kurkcuoglu, 2018, Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R Grand Challenge 2, J. Computer-aided Mol. Des., 32, 175, 10.1007/s10822-017-0049-y

Peterson, 2018, Modeling the assembly order of multimeric heteroprotein complexes, PLoS Comput. Biol., 14, e1005937, 10.1371/journal.pcbi.1005937

Janin, 2005, Assessing predictions of protein-protein interaction: the CAPRI experiment, Protein Sci., 14, 278, 10.1110/ps.041081905

Janin, 2013, The targets of CAPRI rounds 20–27, Proteins, 81, 2075, 10.1002/prot.24375

Rodrigues, 2015, Information-driven structural modelling of protein-protein interactions, Methods Mol. Biol., 1215, 399, 10.1007/978-1-4939-1465-4_18

Geng, 2017, Information-driven, ensemble flexible peptide docking using HADDOCK, Methods Mol. Biol., 1561, 109, 10.1007/978-1-4939-6798-8_8

Peterson, 2017, Improved performance in CAPRI round 37 using LZerD docking and template-based modeling with combined scoring functions, Proteins, 86, 311

Zhang, 2010, Protein interface conservation across structure space, Proc. Natl. Acad. Sci. U.S.A., 107, 10896, 10.1073/pnas.1005894107

Kundrotas, 2012, Templates are available to model nearly all complexes of structurally characterized proteins, Proc. Natl. Acad. Sci. U.S.A., 109, 9438, 10.1073/pnas.1200678109

Matthews, 2001, Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or “interologs”, Genome Res., 11, 2120, 10.1101/gr.205301

Aloy, 2003, The relationship between sequence and interaction divergence in proteins, J. Mol. Biol., 332, 989, 10.1016/j.jmb.2003.07.006

Szilagyi, 2014, Template-based structure modeling of protein-protein interactions, Curr. Opin. Struct. Biol., 24, 10, 10.1016/j.sbi.2013.11.005

Yu, 2004, Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs, Genome Res., 14, 1107, 10.1101/gr.1774904

Bertoni, 2017, Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology, Scientific Rep., 7, 10480, 10.1038/s41598-017-09654-8

Lafita, 2018, Assessment of protein assembly prediction in CASP12, Proteins, 86, 247, 10.1002/prot.25408

Peitsch, 1996, ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling, Biochem. Soc. Trans., 24, 274, 10.1042/bst0240274

Guex, 1997, SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling, Electrophoresis, 18, 2714, 10.1002/elps.1150181505

Schwede, 2003, SWISS-MODEL: an automated protein homology-modeling server, Nucleic Acids Res., 31, 3381, 10.1093/nar/gkg520

Arnold, 2006, The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling, Bioinformatics, 22, 195, 10.1093/bioinformatics/bti770

Bordoli, 2012, Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal, Methods Mol. Biol., 857, 107, 10.1007/978-1-61779-588-6_5

Biasini, 2014, SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Res., 42, W252, 10.1093/nar/gku340

Benkert, 2011, Toward the estimation of the absolute quality of individual protein structure models, Bioinformatics, 27, 343, 10.1093/bioinformatics/btq662

Haas, 2018, Continuous automated model evaluation (CAMEO) complementing the critical assessment of structure prediction in CASP12, Proteins, 86, 387, 10.1002/prot.25431

Berman, 2002, The Protein Data Bank, Acta Crystallogr. D, Biol. Crystallogr., 58, 899, 10.1107/S0907444902003451

The UniProt, C., 2017, UniProt: the universal protein knowledgebase, Nucleic Acids Res., 45, D158, 10.1093/nar/gkw1099

Altschul, 1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389, 10.1093/nar/25.17.3389

Camacho, 2009, BLAST+: architecture and applications, BMC Bioinformatics, 10, 421, 10.1186/1471-2105-10-421

Remmert, 2011, HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment, Nat. Methods, 9, 173, 10.1038/nmeth.1818

Biasini, 2013, OpenStructure: an integrated software framework for computational structural biology, Acta Crystallogr. D, Biol. Crystallogr., 69, 701, 10.1107/S0907444913007051

Bienert, 2017, The SWISS-MODEL Repository—new features and functionality, Nucleic Acids Res., 45, D313, 10.1093/nar/gkw1132

de Beer, 2014, PDBsum additions, Nucleic Acids Res., 42, D292, 10.1093/nar/gkt940

Velankar, 2016, PDBe: improved accessibility of macromolecular structure data from PDB and EMDB, Nucleic Acids Res., 44, D385, 10.1093/nar/gkv1047

Dawson, 2017, CATH: an expanded resource to predict protein function through structure and sequence, Nucleic Acids Res., 45, D289, 10.1093/nar/gkw1098

Grosdidier, 2011, SwissDock, a protein-small molecule docking web service based on EADock DSS, Nucleic Acids Res., 39, W270, 10.1093/nar/gkr366

Marcatili, 2014, Antibody modeling using the prediction of immunoglobulin structure (PIGS) web server [corrected], Nat. Protoc., 9, 2771, 10.1038/nprot.2014.189

Messih, 2014, Improving the accuracy of the structure prediction of the third hypervariable loop of the heavy chains of antibodies, Bioinformatics, 30, 2733, 10.1093/bioinformatics/btu194

Lepore, 2017, PIGSPro: prediction of immunoGlobulin structures v2, Nucleic Acids Res., 45, W17, 10.1093/nar/gkx334

Chothia, 1987, Canonical structures for the hypervariable regions of immunoglobulins, J. Mol. Biol., 196, 901, 10.1016/0022-2836(87)90412-8

Morea, 1998, Conformations of the third hypervariable region in the VH domain of immunoglobulins, J. Mol. Biol., 275, 269, 10.1006/jmbi.1997.1442

Tramontano, 1990, Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins, J. Mol. Biol., 215, 175, 10.1016/S0022-2836(05)80102-0

Rose, 2015, NGL Viewer: a web application for molecular visualization, Nucleic Acids Res., 43, W576, 10.1093/nar/gkv402

Sali, 1993, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol., 234, 779, 10.1006/jmbi.1993.1626

Shapovalov, 2011, A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions, Structure, 19, 844, 10.1016/j.str.2011.03.019

Xu, 2005, Rapid protein Side-Chain packing via tree decomposition, Research in Computational Molecular Biology: 9th Annual International Conference, RECOMB 2005, Cambridge, MA, USA, May 14–18, 2005. Proceedings, 423, 10.1007/11415770_32

Krivov, 2009, Improved prediction of protein side-chain conformations with SCWRL4, Proteins, 77, 778, 10.1002/prot.22488

Eastman, 2017, OpenMM 7: rapid development of high performance algorithms for molecular dynamics, PLoS Comput. Biol., 13, e1005659, 10.1371/journal.pcbi.1005659

Mackerell, 2004, Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations, J. Comput. Chem., 25, 1400, 10.1002/jcc.20065

Mariani, 2013, lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests, Bioinformatics, 29, 2722, 10.1093/bioinformatics/btt473

Read, 2007, Assessment of CASP7 predictions in the high accuracy template-based modeling category, Proteins, 69, 27, 10.1002/prot.21662

Xu, 2010, How significant is a protein structure similarity with TM-score = 0.5, Bioinformatics, 26, 889, 10.1093/bioinformatics/btq066

Elcock, 2001, Identification of protein oligomerization states by analysis of interface conservation, Proc. Natl. Acad. Sci. U.S.A., 98, 2990, 10.1073/pnas.061411798

Capra, 2007, Predicting functionally important residues from sequence conservation, Bioinformatics, 23, 1875, 10.1093/bioinformatics/btm270

Schwede, 2009, Outcome of a workshop on applications of protein models in biomedical research, Structure, 17, 151, 10.1016/j.str.2008.12.014

Kim, 2004, Protein structure prediction and analysis using the Robetta server, Nucleic Acids Res., 32, W526, 10.1093/nar/gkh468

Yang, 2011, Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates, Bioinformatics, 27, 2076, 10.1093/bioinformatics/btr350

Kallberg, 2012, Template-based protein structure modeling using the RaptorX web server, Nat. Protoc., 7, 1511, 10.1038/nprot.2012.085

Aliverti, 2001, Biochemical and crystallographic characterization of ferredoxin-NADP(+) reductase from nonphotosynthetic tissues, Biochemistry, 40, 14501, 10.1021/bi011224c

Kurisu, 2001, Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase, Nat. Struct. Biol., 8, 117, 10.1038/84097

Shinohara, 2017, Structural basis for the isotype-specific interactions of ferredoxin and ferredoxin: NADP(+) oxidoreductase: an evolutionary switch between photosynthetic and heterotrophic assimilation, Photosynth. Res., 134, 281, 10.1007/s11120-016-0331-1

Morales, 2000, Crystallographic studies of the interaction between the ferredoxin-NADP+ reductase and ferredoxin from the cyanobacterium Anabaena: looking for the elusive ferredoxin molecule, Acta Crystallogr. D, Biol. Crystallogr., 56, 1408, 10.1107/S0907444900010052

Duarte, 2012, Protein interface classification by evolutionary analysis, BMC Bioinformatics, 13, 334, 10.1186/1471-2105-13-334

Kimata-Ariga, 2013, Concentration-dependent oligomerization of cross-linked complexes between ferredoxin and ferredoxin-NADP+ reductase, Biochem. Biophys. Res. Commun., 434, 867, 10.1016/j.bbrc.2013.04.033