Pressure-induced phase transition study of magnesiochromite (MgCr2O4) by Raman spectroscopy and X-ray diffraction

Physics of the Earth and Planetary Interiors - Tập 196 - Trang 75-82 - 2012
Wenjun Yong1, Sanda Botis1, Sean R. Shieh1,2, Weiguang Shi1, Anthony C. Withers3
1Department of Earth Sciences, University of Western Ontario, London, Ontario, Canada, N6A 5B7
2Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada N6A 5B7
3Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA

Tài liệu tham khảo

Akaogi, 1999, High pressure transitions in the system MgAl2O4–CaAl2O4: a new hexagonal aluminous phase with implication for the lower mantle, Phys. Earth Planet. Inter., 115, 67, 10.1016/S0031-9201(99)00076-X Andrault, 2001, High-pressure phase transformations in the MgFe2O4 and Fe2O3–MgSiO3 systems, Phys. Chem. Miner., 28, 211, 10.1007/s002690000149 Angel, 2007, Effective hydrostatic limits of pressure media for high-pressure crystallographic studies, J. Appl. Crystallogr., 40, 26, 10.1107/S0021889806045523 Arevalo-Lopez, 2010, Spinel to CaFe2O4 transformation: mechanism and properties of β-CdCr2O4, Inorg. Chem., 49, 2827, 10.1021/ic902228h Åsbrink, 1999, High-pressure phase transition and properties of spinel ZnMn2O4, Phys. Rev. B, 60, 12651, 10.1103/PhysRevB.60.12651 Åsbrink, 1998, High-pressure phase of the cubic spinel NiMn2O4, Phys. Rev. B, 57, 4972, 10.1103/PhysRevB.57.4972 Asimow, 1995, The effect of pressure-induced solid–solid phase transitions on decompression melting of the mantle, Geochim. Cosmochim. Acta, 59, 4489, 10.1016/0016-7037(95)00252-U Aswad, 2011, Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros suture zone, Kurdistan Region, Iraq. Geol. Mag., 148, 802, 10.1017/S0016756811000422 Barnes, 2001, The range of spinel compositions in terrestrial mafic and ultramafic rocks, J. Petrol., 42, 2279, 10.1093/petrology/42.12.2279 Baron, 1998, The influence of iron substitution in the magnetic properties of hausmannite, Mn2+(Fe, Mn)23+O4, Am. Mineral., 83, 786, 10.2138/am-1998-7-810 Bassett, 1972, Disproportionation of Fe2SiO4 to 2FeO+SiO2 at pressures up to 250kbar and temperatures up to 3000°C, Phys. Earth Planet. Inter., 6, 154, 10.1016/0031-9201(72)90048-9 Birch, 1978, Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300K, J. Geophys. Res., 83, 1257, 10.1029/JB083iB03p01257 Borovkova, 1966, Sintering and thermomechanical properties of magnesiochromite, Refract. Ind. Ceram, 7, 715, 10.1007/BF01288163 Brezny, 1975, Effect of atmosphere on the high-temperature strength of magnesiochromite refractories, Am. Ceram. Soc. Bull., 54, 1019 Catti, 1999, High-pressure decomposition of MCr2O4 spinels (M=Mg, Mn, Zn) by ab initio methods, Phys. Chem. Miner., 26, 389, 10.1007/s002690050199 Chen, 2008, Xieite, a new mineral of high-pressure FeCr2O4 polymorph, Chin. Sci. Bull., 53, 3341, 10.1007/s11434-008-0407-1 Chen, 2003, Natural occurrence and synthesis of two new postspinel polymorphs of chromite, Proc. Natl. Acad. Sci. U S A, 100, 14651, 10.1073/pnas.2136599100 Chen, 2003, Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy, Geochim. Cosmochim. Acta, 67, 3937, 10.1016/S0016-7037(03)00175-3 Cookenboo, 1997, Detrital chromian spinel compositions used to reconstruct the tectonic setting of provenance; implications for orogeny in the Canadian Cordillera, J. Sediment. Res., 67, 116 Duke, 1983, Ore deposit models 7. magmatic segregation deposits of chromite, Geosci. Can., 10, 15 Ehrenberg, 2002, Tetragonal low-temperature phase of MgCr2O4, Powder Diffr., 17, 230, 10.1154/1.1479738 Errandonea, 2009, Post-spinel transformations and equation of state in ZnGa2O4: determination at high pressure by in situ X-ray diffraction, Phys. Rev. B, 79, 024103, 10.1103/PhysRevB.79.024103 Evans, 1975, Chrome-spinel in progressive metamorphism–a preliminary analysis, Geochim. Cosmochim. Acta, 39, 959, 10.1016/0016-7037(75)90041-1 Fan, 2008, Thermal equation of state of natural chromium spinel up to 26.8GPa and 628K, J. Mater. Sci., 43, 5546, 10.1007/s10853-008-2825-5 Fei, Y., 1995. Thermal expansion, in: Ahrens, T.J. (Ed.), Mineral Physics and Crystallography: A Handbook of Physical Constants. AGU Reference Shelf 2, American Geophysical Union, pp. 29–44. Fei, 1999, In situ structure determination of the high-pressure phase of Fe3O4, Am. Mineral., 84, 203, 10.2138/am-1999-1-222 Fei, 2007, Toward an internally consistent pressure scale, Proc. Natl. Acad. Sci. U S A, 104, 9182, 10.1073/pnas.0609013104 Funamori, 1997, Broadening of X-ray powder diffraction lines under nonhydrostatic stress, J. Appl. Phys., 82, 142, 10.1063/1.365792 Funamori, 1998, High-pressure transformations in MgAl2O4, J. Geophys. Res., 103, 20813, 10.1029/98JB01575 Green, 1967, The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure, Earth Planet. Sci. Lett., 3, 151, 10.1016/0012-821X(67)90027-1 Greenberg, 2011, Pressure-induced structural phase transition of the iron end-member of ringwoodite (γ-Fe2SiO4) investigated by X-ray diffraction and Mossbauer spectroscopy, Am. Mineral., 96, 833, 10.2138/am.2011.3647 Grimes, 1971, Structural distortions in MgCr2O4, J. Phys. C, 4, L342, 10.1088/0022-3719/4/16/006 Haavik, 2000, Equation of state of magnetite and its high-pressure modification: thermodynamics of the Fe–O system at high pressure, Am. Mineral., 85, 514, 10.2138/am-2000-0413 Halenius, 2010, Structural relaxation around Cr3+ and the red–green color change in the spinel (sensu stricto)–magnesiochromite (MgAl2O4–MgCr2O4) and gahnite–zincochromite (ZnAl2O4–ZnCr2O4) solid–solution series, Am. Mineral., 95, 456, 10.2138/am.2010.3388 Hammersley, 1996, Two-dimensional detector software: from real detector to idealised image or two-theta scan, High Pressure Res., 14, 235, 10.1080/08957959608201408 Hearmon, 1984, The elastic constants of crystals and other anisotropic materials, 559 Hidaka, 2003, Structural modulation induced by the incommensurate antiferromagnetic phase transitionin ZnCr2Se4, Phys. Status Solidi B, 236, 570, 10.1002/pssb.200301551 Irifune, 1991, A new high-pressure form of MgAl2O4, Nature, 349, 409, 10.1038/349409a0 Irvine, 1965, Chromian spinel as a petrogenetic indicator: part 1, Theory. Can. J. Earth Sci., 2, 648, 10.1139/e65-046 Irvine, 1967, Chromian spinel as a petrogenetic indicator: Part 2 Petrologic applications, Can. J. Earth Sci., 4, 71, 10.1139/e67-004 Julien, 2003, Raman spectroscopic studies of lithium manganates with spinel structure, J. Phys. Condens. Mat., 15, 3151, 10.1088/0953-8984/15/19/315 Karklit, 1970, Properties of ceramics in the system MgO–MgCr2O4, Refract. Ind. Ceram, 11, 786, 10.1007/BF01290607 Klemme, 1997, The reaction MgCr2O4+SiO2=Cr2O3+MgSiO3 and the free energy of formation of magnesiochromite (MgCr2O4), Contrib. Mineral. Petrol., 130, 59, 10.1007/s004100050349 Klemme, 2000, The near-solidus transition from garnet lherzolite to spinel lherzolite, Contrib. Mineral. Petrol., 138, 237, 10.1007/s004100050560 Klemme, 2000, The heat capacity of MgCr2O4, FeCr2O4, and Cr2O3 at low temperatures and derived thermodynamic properties, Am. Mineral., 85, 1686, 10.2138/am-2000-11-1212 Klotz, 2009, Hydrostatic limits of 11 pressure transmitting media, J. Phys. D, 42, 075413, 10.1088/0022-3727/42/7/075413 Kojitani, 2007, High-pressure phase relations and crystal chemistry of calcium ferrite-type solid solutions in the system MgAl2O4–Mg2SiO4, Am. Mineral., 92, 1112, 10.2138/am.2007.2255 Kuliev, 1983, Phase composition and sintering of magnesiochromite granular ceramic, Glass Ceram., 40, 311, 10.1007/BF00818154 Kyono, 2012, The influence of the Jahn–Teller effect at Fe2+ on the structure of chromite at high pressure, Phys. Chem. Miner., 39, 131, 10.1007/s00269-011-0468-6 Larson, A.C., Von Dreele, R.B., 2004. GSAS. General Structure Analysis System. Los Alamos National Laboratory Report LAUR, pp. 86–748. Lenaz, 2010, Crystal chemistry of Cr-spinels from the lherzolite mantle peridotite of Ronda (Spain), Am. Mineral., 95, 1323, 10.2138/am.2010.3545 Lenaz, 2005, The crystal chemistry of detrital chromian spinel from the southeastern Alps and outer dinarides: the discrimination of supplies from areas of similar tectonic setting?, Can. Mineral., 43, 1305, 10.2113/gscanmin.43.4.1305 Lenaz, 2004, Structural changes and valence states in the MgCr2O4–FeCr2O4 solid solution series, Phys. Chem. Miner., 31, 633, 10.1007/s00269-004-0420-0 Lenaz, 2006, The MgCr2O4–MgFe2O4 solid solution series: effects of octahedrally coordinated Fe3+ on T–O bond lengths, Phys. Chem. Miner., 33, 465, 10.1007/s00269-006-0093-y Levy, 2005, P–V equation of State, thermal expansion, and P–T stability of synthetic zincochromite (ZnCr2O4 spinel), Am. Mineral., 90, 1157, 10.2138/am.2005.1755 Levy, 2000, Phase transition of synthetic zinc ferrite spinel (ZnFe2O4) at high pressure, from synchrotron X-ray powder diffraction, Phys. Chem. Miner., 27, 638, 10.1007/s002690000117 Liu, 1975, Disproportionation of MgAl2O4 spinel at high pressures and temperatures, GeoRL, 2, 9 Liu, 2002, Pressure-induced phase transition in Mn3O4 as investigated by Raman spectroscopy, J. Phys. Soc. Jpn., 71, 2820, 10.1143/JPSJ.71.2820 Lutz, 1991, Lattice vibration spectra LIX. Single crystal infrared and Raman studies of spinel type oxides, J. Solid State Chem., 90, 54, 10.1016/0022-4596(91)90171-D Malavasi, 2002, Raman spectroscopy of AMn2O4 (A=Mn, Mg and Zn) spinels, Phys. Chem. Chem. Phys., 4, 3876, 10.1039/b203520k Malavasi, 2005, High-pressure stability of the tetragonal spinel MgMn2O4: role of inversion, Phys. Rev. B, 71, 174102, 10.1103/PhysRevB.71.174102 Mao, 1986, Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions, J. Geophys. Res., 91, 4673, 10.1029/JB091iB05p04673 Nishiguchi, 2002, A pseudotetramer in the geometrically frustrated spinel system CdV2O4, J. Phys. Condens. Mat., 14, L551, 10.1088/0953-8984/14/28/105 O’Neill, 1994, Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4, Phys. Chem. Miner., 20, 541, 10.1007/BF00211850 Oikawa, 1998, Structural phase transition of the spinel-type oxide LiMn2O4, Solid State Ionics, 109, 35, 10.1016/S0167-2738(98)00073-3 Ono, 2006, The stability and compressibility of MgAl2O4 high-pressure polymorphs, Phys. Chem. Miner., 33, 200, 10.1007/s00269-006-0068-z Ortega-San-Martín, 2008, Low temperature neutron diffraction study of MgCr2O4 spinel, J. Phys. Condens. Mat., 20, 104238, 10.1088/0953-8984/20/10/104238 Packter, 1980, The crystallisation of chromite magnesiochromite spinels from a calcium magnesium aluminosilicate glass: Nucleation, crystal growth and final crystal sizes, Kristall und Technik, 15, 1025, 10.1002/crat.19800150906 Piszora, 2004, X-ray diffraction studies on the nature of the phase transition in the stoichiometric LiMn2O4, J. Alloys Compd., 382, 119, 10.1016/j.jallcom.2004.06.009 Plumier, 1968, Diffraction of neutrons of normal spinel compound MgCr2O4, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, 267, 98 Radaelli, 2005, Orbital ordering in transition-metal spinels, New J. Phys., 7, 53, 10.1088/1367-2630/7/1/053 Ringwood, 1969, High pressure transformations of spinels (I), Earth Planet. Sci. Lett., 5, 245, 10.1016/S0012-821X(68)80046-9 Sack, 1991, Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications, Am. Mineral., 76, 827 Shu, J.F., Mao, W.L., Hemley, R.J., Mao, H.K., 2007. Pressure-induced distortive phase transition in chromite-spinel at 29GPa, in: Manaa, M.R., Goncharov, A.F., Hemley, R.J., Bini, R. (Eds.), Materials Research at High Pressure, pp. 179–184. Singh, 1975, Thermal expansion of natural spinel, ferroan gahnite, magnesiochromite and synthetic spinel, Acta Crystallogr., Sect. A: Cryst. Phys. Diffract. Theor. Gen. Crystallogr., 31, 820, 10.1107/S0567739475001775 Toby, 2001, EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr., 34, 210, 10.1107/S0021889801002242 Tsunetsugu, 2003, Magnetic transition and orbital degrees of freedom in vanadium spinels, Phys. Rev. B, 68, 060405, 10.1103/PhysRevB.68.060405 Ueda, 1997, Magnetic and Structural Transitions in (LixZn1-x)V2O4 with the Spinel Structure, J. Phys. Soc. Jpn., 66, 778, 10.1143/JPSJ.66.778 Wang, 2003, High-pressure X-ray diffraction and Raman spectroscopic studies of the tetragonal spinel CoFe2O4, Phys. Rev. B, 68, 94101, 10.1103/PhysRevB.68.094101 Wang, 2002, High pressure Raman spectroscopic study of spinel MgCr2O4, J. Phys. Chem. Solids, 63, 2057, 10.1016/S0022-3697(02)00194-4 Wang, 2002, In situ x-ray diffraction and Raman spectroscopy of pressure-induced phase transformation in spinel Zn2TiO4, Phys. Rev. B, 66, 024103, 10.1103/PhysRevB.66.024103 Waskowska, 2001, CuMn2O4: properties and the high-pressure induced Jahn-Teller phase transition, J. Phys. Condens. Mat., 13, 2549, 10.1088/0953-8984/13/11/311 Winell, 2006, The high-pressure phase transformation and breakdown of MgFe2O4, Am. Mineral., 91, 560, 10.2138/am.2006.1946 Yamamoto, 2009, Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet, Litho, 109, 314, 10.1016/j.lithos.2008.05.003 Yang, 2007, Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geo., 35, 875 Yong, 2008, Heat capacity and phase equilibria of wadeite-type K2Si4O9, Contrib. Mineral. Petrol., 155, 137, 10.1007/s00410-007-0232-6 Yong, 2012, Heat capacity, entropy and phase equilibria of stishovite, Phys. Chem. Miner., 39, 153, 10.1007/s00269-011-0470-z