MyD88-Dependent and MyD88-Independent Pathways in Synergy, Priming, and Tolerance between TLR Agonists
Tóm tắt
TLRs sense components of microorganisms and are critical host mediators of inflammation during infection. Different TLR agonists can profoundly alter inflammatory effects of one another, and studies suggest that the sequence of exposure to TLR agonists may importantly impact on responses during infection. We tested the hypothesis that synergy, priming, and tolerance between TLR agonists follow a pattern that can be predicted based on differential engagement of the MyD88-dependent (D) and the MyD88-independent (I) intracellular signaling pathways. Inflammatory effects of combinations of D and I pathway agonists were quantified in vivo and in vitro. Experiments used several D-specific agonists, an I-specific agonist (poly(I:C)), and LPS, which acts through both the D and I pathways. D-specific agonists included: peptidoglycan-associated lipoprotein, Pam3Cys, flagellin, and CpG DNA, which act through TLR2 (peptidoglycan-associated lipoprotein and Pam3Cys), TLR5, and TLR9, respectively. D and I agonists were markedly synergistic in inducing cytokine production in vivo in mice. All of the D-specific agonists were synergistic with poly(I:C) in vitro in inducing TNF and IL-6 production by mouse bone marrow-derived macrophages. Pretreatment of bone marrow-derived macrophages with poly(I:C) led to a primed response to subsequent D-specific agonists and vice versa, as indicated by increased cytokine production, and increased NF-κB translocation. Pretreatment with a D-specific agonist augmented LPS-induced IFN-β production. All D-specific agonists induced tolerance to one another. Thus, under the conditions studied here, simultaneous and sequential activation of both the D and I pathways causes synergy and priming, respectively, and tolerance is induced by agonists that act through the same pathway.
Từ khóa
Tài liệu tham khảo
Poltorak, A., X. He, I. Smirnova, M. Y. Liu, C. V. Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, et al 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085-2088.
Aliprantis, A. O., R. B. Yang, M. R. Mark, S. Suggett, B. Devaux, J. D. Radolf, G. R. Klimpel, P. Godowski, A. Zychlinsky. 1999. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285: 736-739.
Hemmi, H., O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda, S. Akira. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408: 740-745.
Ozinsky, A., D. M. Underhill, J. D. Fontenot, A. M. Hajjar, K. D. Smith, C. B. Wilson, L. Schroeder, A. Aderem. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. USA 97: 13766-13771.
Hayashi, F., K. D. Smith, A. Ozinsky, T. R. Hawn, E. C. Yi, D. R. Goodlett, J. K. Eng, S. Akira, D. M. Underhill, A. Aderem. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099-1103.
Takeuchi, O., T. Kawai, P. F. Muhlradt, M. Morr, J. D. Radolf, A. Zychlinsky, K. Takeda, S. Akira. 2001. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13: 933-940.
Ingalls, R. R., E. Lien, D. T. Golenbock. 2001. Membrane-associated proteins of a lipopolysaccharide-deficient mutant of Neisseria meningitidis activate the inflammatory response through Toll-like receptor 2. Infect. Immun. 69: 2230-2236.
Alexopoulou, L., A. C. Holt, R. Medzhitov, R. A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413: 732-738.
Takeuchi, O., S. Sato, T. Horiuchi, K. Hoshino, K. Takeda, Z. Dong, R. L. Modlin, S. Akira. 2002. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169: 10-14.
Zhang, D., G. Zhang, M. S. Hayden, M. B. Greenblatt, C. Bussey, R. A. Flavell, S. Ghosh. 2004. A Toll-like receptor that prevents infection by uropathogenic bacteria. Science 303: 1522-1526.
Heil, F., H. Hemmi, H. Hochrein, F. Ampenberger, C. Kirschning, S. Akira, G. Lipford, H. Wagner, S. Bauer. 2004. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303: 1526-1529.
Hirschfeld, M., J. J. Weis, V. Toshchakov, C. A. Salkowski, M. J. Cody, D. C. Ward, N. Qureshi, S. M. Michalek, S. N. Vogel. 2001. Signaling by Toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect. Immun. 69: 1477-1482.
Jones, B. W., T. K. Means, K. A. Heldwein, M. A. Keen, P. J. Hill, J. T. Belisle, M. J. Fenton. 2001. Different Toll-like receptor agonists induce distinct macrophage responses. J. Leukocyte Biol. 69: 1036-1044.
Yamamoto, M., S. Sato, H. Hemmi, K. Hoshino, T. Kaisho, H. Sanjo, O. Takeuchi, M. Sugiyama, M. Okabe, K. Takeda, S. Akira. 2003. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301: 640-643.
West, M. A., T. Bennet, L. Clair. 1995. Reprogrammed macrophage tumor necrosis factor and interleukin-1 release with inflammatory pretreatment: differential regulation by endotoxin and zymosan. J. Trauma 39: 404-410.
Kreutz, M., U. Ackermann, S. Hauschildt, S. W. Krause, D. Riedel, W. Bessler, R. Andreesen. 1997. A comparative analysis of cytokine production and tolerance induction by bacterial lipopeptides, lipopolysaccharides and Staphyloccous aureus in human monocytes. Immunology 92: 396-401.
Sato, S., F. Nomura, T. Kawai, O. Takeuchi, P. F. Muhlradt, K. Takeda, S. Akira. 2000. Synergy and cross-tolerance between Toll-like receptor (TLR) 2- and TLR4-mediated signaling pathways. J. Immunol. 165: 7096-7101.
Lehner, M. D., S. Morath, K. S. Michelsen, R. R. Schumann, T. Hartung. 2001. Induction of cross-tolerance by lipopolysaccharide and highly purified lipoteichoic acid via different Toll-like receptors independent of paracrine mediators. J. Immunol. 166: 5161-5167.
Jacinto, R., T. Hartung, C. McCall, L. Li. 2002. Lipopolysaccharide- and lipoteichoic acid-induced tolerance and cross-tolerance: distinct alterations in IL-1 receptor-associated kinase. J. Immunol. 168: 6136-6141.
Dobrovolskaia, M. A., A. E. Medvedev, K. E. Thomas, N. Cuesta, V. Toshchakov, T. Ren, M. J. Cody, S. M. Michalek, N. R. Rice, S. N. Vogel. 2003. Induction of in vitro reprogramming by Toll-like receptor (TLR)2 and TLR4 agonists in murine macrophages: effects of TLR “homotolerance” versus “heterotolerance” on NF-κB signaling pathway components. J. Immunol. 170: 508-519.
Peck, O. M., H. Fan, G. E. Tempel, G. Teti, P. V. Halushka, J. A. Cook. 2004. Staphylococcus aureus and lipopolysaccharide induce homologous tolerance but heterologous priming: role of interferon-γ. Shock 21: 254-260.
Peck, O. M., D. L. Williams, K. F. Breuel, J. H. Kalbfleisch, H. Fan, G. E. Tempel, G. Teti, J. A. Cook. 2004. Differential regulation of cytokine and chemokine production in lipopolysaccharide-induced tolerance and priming. Cytokine 26: 202-208.
Kalis, C., M. Gumenscheimer, N. Freudenberg, S. Tchaptchet, G. Fejer, A. Heit, S. Akira, C. Galanos, M. A. Freudenberg. 2005. Requirement for TLR9 in the immunomodulatory activity of Propionibacterium acnes. J. Immunol. 174: 4295-4300.
Liang, M. D., A. Bagchi, H. S. Warren, M. M. Tehan, J. A. Trigilio, L. K. Beasley-Topliffe, B. L. Tesini, J. C. Lazzaroni, M. J. Fenton, J. Hellman. 2005. Bacterial peptidoglycan-associated lipoprotein: a naturally occurring Toll-like receptor 2 agonist that is shed into serum and has synergy with lipopolysaccharide. J. Infect. Dis. 191: 939-948.
Hellman, J., P. M. Loiselle, E. M. Zanzot, M. M. Tehan, L. A. Boyle, J. T. Kurnick, H. S. Warren. 2000. Release of Gram-negative outer membrane proteins into human serum and septic rat blood and their interactions with immunoglobulin in antiserum to Escherichia coli J5. J. Infect. Dis. 181: 1034-1043.
Hellman, J., P. M. Loiselle, M. M. Tehan, J. E. Allaire, L. A. Boyle, J. T. Kurnick, D. M. Andrews, K. S. Kim, H. S. Warren. 2000. Outer membrane protein A, peptidoglycan-associated lipoprotein, and murein lipoprotein are released by Escherichia coli bacteria into serum. Infect. Immun. 68: 2566-2572.
Hellman, J., H. S. Warren. 2001. Outer membrane protein A (OmpA), peptidoglycan-associated lipoprotein (PAL), and murein lipoprotein (MLP) are released in experimental Gram-negative sepsis. J. Endotoxin Res. 7: 69-72.
Yamamoto, M., S. Sato, K. Mori, K. Hoshino, O. Takeuchi, K. Takeda, S. Akira. 2002. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169: 6668-6672.
Oshiumi, H., M. Matsumoto, K. Funami, T. Akazawa, T. Seya. 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3- mediated interferon-β induction. Nat. Immunol. 4: 161-167.
Covert, M. W., T. H. Leung, J. E. Gaston, D. Baltimore. 2005. Achieving stability of lipopolysaccharide-induced NF-κB activation. Science 309: 1854-1857.
Hoebe, K., X. Du, P. Georgel, E. Janssen, K. Tabeta, S. O. Kim, J. Goode, P. Lin, N. Mann, S. Mudd, et al 2003. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424: 743-748.
Kawai, T., O. Adachi, T. Ogawa, K. Takeda, S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11: 115-122.
Gitlin, L., W. Barchet, S. Gilfillan, M. Cella, B. Beutler, R. A. Flavell, M. S. Diamond, M. Colonna. 2006. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA 103: 8459-8464.
Jiang, Z., T. W. Mak, G. Sen, X. Li. 2004. Toll-like receptor 3-mediated activation of NF-κB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-β. Proc. Natl. Acad. Sci. USA 101: 3533-3538.
Hellman, J., J. D. J. Roberts, M. M. Tehan, J. E. Allaire, H. S. Warren. 2002. Bacterial peptidoglycan-associated lipoprotein is released into the bloodstream in Gram-negative sepsis and causes inflammation and death in mice. J. Biol. Chem. 277: 14274-14280.
Novitsky, T. J., P. F. Roslansky, G. R. Siber, H. S. Warren. 1985. A turbidometric method for quantifying serum inhibition of limulus amebocyte lysate response. J. Clin. Microbiol. 20: 211-216.
Schilling, D., K. Thomas, K. Nixdorff, S. N. Vogel, M. J. Fenton. 2002. Toll-like receptor 4 and Toll-IL-1 receptor domain-containing adapter protein (TIRAP)/myeloid differentiation protein 88 adapter-like (Mal) contribute to maximal IL-6 expression in macrophages. J. Immunol. 169: 5874-5880.
Punturieri, A., R. S. Alviani, T. Polak, P. Copper, J. Sonstein, J. L. Curtis. 2004. Specific engagement of TLR4 or TLR3 does not lead to IFN-β-mediated innate signal amplification and STAT1 phosphorylation in resident murine alveolar macrophages. J. Immunol. 173: 1033-1042.
Liew, F. Y., D. Xu, E. K. Brint, L. A. O’Neill. 2005. Negative regulation of Toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5: 446-458.
Kobayashi, K., L. D. Hernandez, J. E. Galan, C. A. Janeway, R. Medzhitov, R. A. Flavell. 2002. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110: 191-202.
Sato, S., M. Sugiyama, M. Yamamoto, Y. Watanabe, T. Kawai, K. Takeda, S. Akira. 2003. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171: 4304-4310.
Medvedev, A. E., P. Henneke, A. Schromm, E. Lien, R. Ingalls, M. J. Fenton, D. T. Golenbock, S. N. Vogel. 2001. Induction of tolerance to lipopolysaccharide and mycobacterial components in Chinese hamster ovary/CD14 cells is not affected by overexpression of Toll-like receptors 2 or 4. J. Immunol. 167: 2257-2267.
Roelofs, M. F., L. A. Joosten, S. Abdollahi-Roodsaz, A. W. van Lieshout, T. Sprong, F. H. van den Hoogen, W. B. van den Berg, T. R. Radstake. 2005. The expression of Toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of Toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum. 52: 2313-2322.
Napolitani, G., A. Rinaldi, F. Bertoni, F. Sallusto, A. Lanzavecchia. 2005. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 6: 769-776.
Sato, S., O. Takeuchi, T. Fujita, H. Tomizawa, K. Takeda, S. Akira. 2002. A variety of microbial components induce tolerance to lipopolysaccharide by differentially affecting MyD88-dependent and -independent pathways. Int. Immunol. 14: 783-791.
Dalpke, A. H., M. D. Lehner, T. Hartung, K. Heeg. 2005. Differential effects of CpG-DNA in Toll-like receptor-2/-4/-9 tolerance and cross-tolerance. Immunology 116: 203-212.
Hume, D. A., D. M. Underhill, M. J. Sweet, A. O. Ozinsky, F. Y. Liew, A. Aderem. 2001. Macrophages exposed continuously to lipopolysaccharide and other agonists that act via Toll-like receptors exhibit a sustained and additive activation state. BMC Immunol. 2: 11
Fitting, C., S. Dhawan, J. M. Cavaillon. 2004. Compartmentalization of tolerance to endotoxin. J. Infect. Dis. 189: 1295-1303.