High-resolution, non-contact, cellular level imaging of the cornea of the eye in vivo

Optics & Laser Technology - Tập 150 - Trang 107922 - 2022
C.S. Suchand Sandeep1, Nyein Chan Lwin2, Yu-Chi Liu2,3, Veluchamy Amutha Barathi2,3, Tin Aung2,4, Mani Baskaran2,3, Vadakke Matham Murukeshan1
1Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
2Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
3Eye-ACP, Duke-NUS Medical School, Singapore
4Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Tài liệu tham khảo

Resnikoff, 2004, Global data on visual impairment in the year 2002, Bull World Health Organ, 82, 844 Ivarsdottir, 2019, Sequence variation at ANAPC1 accounts for 24% of the variability in corneal endothelial cell density, Nat Commun, 10, 1284, 10.1038/s41467-019-09304-9 Pascolini, 2012, Global estimates of visual impairment: 2010, Br J Ophthalmol, 96, 614, 10.1136/bjophthalmol-2011-300539 Xu, 2016, Value of corneal epithelial and Bowman’s layer vertical thickness profiles generated by UHR-OCT for sub-clinical keratoconus diagnosis, Sci Rep, 6, 31550, 10.1038/srep31550 Hong, 2015, A simple and non-contact optical imaging probe for evaluation of corneal diseases, Rev Sci Instrum, 86, 093702, 10.1063/1.4929684 Suzuki, 2003, Cell–matrix and cell–cell interactions during corneal epithelial wound healing, Prog Retin Eye Res, 22, 113, 10.1016/S1350-9462(02)00042-3 Shen, 2016, Diabetic cornea wounds produce significantly weaker electric signals that may contribute to impaired healing, Sci Rep, 6, 26525, 10.1038/srep26525 Bettahi, 2014, Genome-wide transcriptional analysis of differentially expressed genes in diabetic, healing corneal epithelial cells: hyperglycemia-suppressed TGFbeta3 expression contributes to the delay of epithelial wound healing in diabetic corneas, Diabetes, 63, 715, 10.2337/db13-1260 Mazlin, 2018, In vivo high resolution human corneal imaging using full-field optical coherence tomography, Biomed Opt Exp, 9, 557, 10.1364/BOE.9.000557 Niederer, 2010, Clinical in vivo confocal microscopy of the human cornea in health and disease, Prog Retin Eye Res, 29, 30, 10.1016/j.preteyeres.2009.11.001 Ilginis, 2014, Ophthalmic imaging, Br Med Bull, 111, 77, 10.1093/bmb/ldu022 Suchand Sandeep, 2019, Optical sectioning and high resolution visualization of trabecular meshwork using Bessel beam assisted light sheet fluorescence microscopy, J Biophotonics, 12, 10.1002/jbio.201900048 Geng, 2009, In vivo imaging of microscopic structures in the rat retina, Invest Ophthalmol Vis Sci, 50, 5872, 10.1167/iovs.09-3675 Lim, 2016, A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications, Sci Rep, 6, 24044, 10.1038/srep24044 Bennett, 2009, Ophthalmic imaging today: an ophthalmic photographer's viewpoint - a review, Clin Exp Ophthalmol, 37, 2, 10.1111/j.1442-9071.2008.01812.x Sujatha, 2003, An all fiber optic system modeling for the gastrointestinal endoscopy: design concepts and fluorescent analysis, Opt Commun, 219, 71, 10.1016/S0030-4018(03)01198-2 Villani, 2014, In vivo confocal microscopy of the ocular surface: from bench to bedside, Curr Eye Res, 39, 213, 10.3109/02713683.2013.842592 Huang, 1991, Optical coherence tomography, Science, 254, 1178, 10.1126/science.1957169 Thomas, 2004, Optical coherence tomography–a review of the principles and contemporary uses in retinal investigation, Eye (Lond), 18, 561, 10.1038/sj.eye.6700729 Schmitt, 1999, Optical coherence tomography (OCT): a review, IEEE J Sel Top Quantum Electron, 5, 1205, 10.1109/2944.796348 Y. Yasuno, V.D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.P. Chan, M. Itoh, T. Yatagai, Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments, Opt Express 13(26) (2005) 10652-64. Gora, 2009, Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range, Opt Express, 17, 14880, 10.1364/OE.17.014880 Tankam, 2015, Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases, Opt Lett, 40, 1113, 10.1364/OL.40.001113 Chen, 2017, Visualizing Micro-anatomical Structures of the Posterior Cornea with Micro-optical Coherence Tomography, Sci Rep, 7, 10752, 10.1038/s41598-017-11380-0 Beaurepaire, 1998, Full-field optical coherence microscopy, Opt Lett, 23, 244, 10.1364/OL.23.000244 Teng, 2006, Multiphoton autofluorescence and second-harmonic generation imaging of the ex vivo porcine eye, Invest Ophthalmol Vis Sci, 47, 1216, 10.1167/iovs.04-1520 Batista, 2016, Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope, J Biomed Opt, 21, 036002, 10.1117/1.JBO.21.3.036002 Batista, 2018, Assessment of Human Corneas Prior to Transplantation Using High-Resolution Two-Photon Imaging, Invest Ophthalmol Vis Sci, 59, 176, 10.1167/iovs.17-22002 Wang, 2006, Intraocular multiphoton microscopy with subcellular spatial resolution by infrared femtosecond lasers, Histochem Cell Biol, 126, 507, 10.1007/s00418-006-0187-0 Bochert, 2005, Contribution to comprehension of image formation in confocal microscopy of cornea with Rostock cornea module, Br J Ophthalmol, 89, 1351, 10.1136/bjo.2004.063743 Bozkir, 1997, Measurements of axial length and radius of corneal curvature in the rabbit eye, Acta Med Okayama, 51, 9 Hayashi, 2002, Comparative observations on corneas, with special reference to Bowman’s layer and Descemet’s membrane in mammals and amphibians, J Morphol, 254, 247, 10.1002/jmor.10030 Schulz, 2003, In vivo pachymetry in normal eyes of rats, mice and rabbits with the optical low coherence reflectometer, Vis Res, 43, 723, 10.1016/S0042-6989(03)00005-1 Selci, 2011, Supercontinuum ultra wide range confocal microscope for reflectance spectroscopy of living matter and material science surfaces, AIP Adv, 1, 032143, 10.1063/1.3631661 Zhang, 2010, Collecting back-reflected photons in photoacoustic microscopy, Opt Express, 18, 1278, 10.1364/OE.18.001278 Kaye, 1962, Studies on the cornea. I. The fine structure of the rabbit cornea and the uptake and transport of colloidal particles by the cornea in vivo, J Cell Biol, 12, 457, 10.1083/jcb.12.3.457 Patel, 2019, The refractive index of the human cornea: A review, Cont Lens Anterior Eye, 42, 575, 10.1016/j.clae.2019.04.018 Wang, 2011, Total corneal power estimation: ray tracing method versus gaussian optics formula, Invest Ophthalmol Vis Sci, 52, 1716, 10.1167/iovs.09-4982 Zhang, 2017, Age-Related Variations of Rabbit Corneal Geometrical and Clinical Biomechanical Parameters, Biomed Res Int, 2017, 3684971 Dong, 2013, Measurement of central corneal thickness and pre-corneal tear film thickness of rabbits using the Scheimpflug system, Int J Ophthalmol, 6, 584 Wang, 2013, Normal corneal thickness measurements in pigmented rabbits using spectral-domain anterior segment optical coherence tomography, Vet Ophthalmol, 16, 130, 10.1111/j.1463-5224.2012.01041.x