Nucleotide sequence and cellular distribution of rat chromogranin B (secretogranin I) mRNA in the neuroendocrine system

Springer Science and Business Media LLC - Tập 1 - Trang 63-75 - 1989
Sonja Forss-Petter1, Patria Danielson1, Elena Battenberg2, Floyd Bloom2, J. Gregor Sutcliffe1
1Department of Molecular Biology, Scripps Clinic and Research Foundation, USA
2Department of Basic and Clinical Research, Scripps Clinic and Research Foundation, USA

Tóm tắt

The mRNA of rat secretory-vesicle protein chromogranin B is abundant in brain, adrenal medulla, and anterior pituitary. The primary translation product predicted from the cDNA sequence of this 2.337-nucleotide transcript corresponds to a hydrophilic 655-residue protein preceded by a signal peptide. Both termini of the mature 75-kD protein show extensive similarity to other chromogranins; the more variable internal region is characterized by glutamic acid clusters and numerous pairs of basic residues. In rodent brain, mRNA accumulation starts around embryonic days 13–14 and peaks by postnatal day 20. In situ hybridization in brain sections shows that the mRNA is enriched in the hippocampal formation, the endocrine hypothalamus, the olfactory system, and in anatomically distinct structures in the pons-medulla.

Tài liệu tham khảo

Amano, T., Richelson, E., Nirenberg, M. (1972). Neurotransmitter synthesis by neuroblastoma clones. Proc. Natl. Acad. Sci. U.S.A. 69:258–263 Angeletti, R.H. (1986). Chromogranins and neuroendocrine secretion. Lab. Invest. 55:387–390 Aviv, H., Leder, P. (1972). Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc. Natl. Acad. Sci. U.S.A. 69:1408–1412 Bankier, A.T., Barrell, B.G. (1983). Shotgun RNA sequencing. Techniques in Nucleic Acid Biochemistry. R.A. Flavell (ed). Elsevier Scientific. Shannon, pp 1–34 Benedum, U.M., Baeuerle, P.A., Konecki, D.S., Frank, R., Powell, J., Mallet, J., Huttner, W.B. (1986). The primary structure of bovine chromogranin A: A representative of a class of acidic secretory proteins common to a variety of peptidergic cells. EMBO J. 5:1496–1502 Benedum, U.M., Lamouroux, A., Konecki, D.S., Rosa, P., Hille, A., Baeuerle, P.A., Frank, R., Lottspeich, F., Mallet, J., Huttner, W.B. (1987). The primary structure of human secretogranin I (chromogranin B): Comparison with chromogranin A reveals homologous terminal domains and a large intervening variable region. EMBO J. 6:1203–1211 Biggin, M.D., Gibson, T.J., Hong, G.F. (1983). Buffer gradient gells and35S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. U.S.A. 80:3963–3965 Brow, M.A.D., Pesin, R., Sutcliffe, J.G. (1985). The tetracycline repressor of pSC101. Mol. Biol. Evol. 2:1–12 Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., Rutter, W.J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299 Danielson, P.E., Forss-Petter, S., Brow, M.A., Calavetta, L., Douglass, J., Milner, R., Sutcliffe, J.G. (1988). p1B15: A cDNA clone of the rat mRNA encoding cyclophilin. DNA 7:261–267 Eiden, L.E. (1987). Is chromogranin a prohormone? Nature 325:301 Eiden, L.E., Huttner, W.B., Mallet, J., O'Connor, D.T., Winkler, H., Zanini, A. (1987). A nomenclature proposal for the chromogranin/secretogranin proteins. Neuroscience 21:1019–1021 Fischer-Colbrie, R., Frischenschlager, I. (1985). Immunological characterization of secretory proteins of chromaffin granules: chromogranins A, chromogranins B and enkephalin-containing peptides. J Neurochem. 44:1854–1861 Fischer-Colbrie, R., Lassmann, H., Hagn, C., Winkler, H. (1985). Immunological studies on the distribution of chromogranin A and B in endocrine and nervous tissue. Neuroscience 16:547–555 Fischer-Colbrie, R., Hagn, C., Schober, M. (1987). Chromogranins A, B, and C: Widespread constituents of secretory vesicles. Ann. N.Y. Acad. Sci. 493:120–134 Forss-Petter, S., Danielson, P., Sutcliffe, J.G. (1986). Neuron-specific enolase: Complete structure of rat mRNA, multiple transcriptional start sites, and evidence suggesting post-transcriptional control. J. Neurosci. Res. 16:141–156 Giorgi, C., Blumberg, B., Kolakofsky, D. (1983). Sendai-virus contains overlapping genes expressed from a single mRNA. Cell 35:829–836 Hagenbüchle, O., Sauter, M., Steitz, J.A., Maus, R.G. (1978). Conservation of the primary structure at the 3′ end of 18S rRNA from eukaryotic cells. Cell 13:551–563 Hagn, C., Schmid, K.W., Fischer-Colbrie, R., Winkler, H. (1986). Chromogranin A, B, and C in human adrenal medulla and endocrine tissues. Lab. Invest. 55:405–411 Higgins, G.A., Wilson, M.C. (1987). In situ hybridization for mapping the neuroanatomical distribution of novel brain mRNAs. In Situ Hybridization Applications to Neurobiology. K.L. Valentino, J.H. Eberwine, J.D. Barchas (eds). Oxford University Press, Oxford, pp 146–162 Hortsch, M., Meyer, D.I. (1986). Transfer of secretory proteins through the membrane of the endoplasmic reticulum. Int. Rev. Cytol. 102:215–242 Huttner, W.B., Benedum, U.M. (1987). Chromogranin A and Pancreastatin. Nature 325:305 Iacangelo, A., Affolter, H.-U., Eiden, L.E., Herbert, E., Grimes, M. (1986). Bovine chromogranin A sequence and distribution of its messenger RNA in endocrine tissues. Nature 324:82–86 Kelly, R.B. (1985). Pathways of protein secretion in eukaryotes. Science 230:25–32 Kozak, M. (1984). Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 12:857–872 Kozak, M. (1986). Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292 Lee, R.W.H., Huttner, W.B. (1983). Tyrosine-O-sulfated proteins of PC12 pheochromocytoma cells and their sulfation by a tyrosylprotein sulfotransferase. J. Biol. Chem. 258:11326–11334 Maxam, A.M., Gilbert, W. (1977). A new method of sequencing DNA. Proc. Natl. Acad. Sci. U.S.A. 74: 560–564 Milner, R.J., Sutcliffe, J.G. (1983). Gene expression in rat brain. Nucleic Acids Res. 11:5497–5520 Okayama, H., Berg, P. (1983). A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells. Mol. Cell. Biol. 3:280–289 Pierschbacher, M.D., Ruoslahti, E. (1984). Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc. Natl. Acad. Sci. U.S.A. 81:5985–5988 Proudfoot, N.J., Brownlee, G.G. (1976). 3′ non-coding region sequences in eukaryotic messenger RNA. Nature 263:211–214 Pytela, R., Pierschbacher, M.D., Ruoslahti, E. (1985). Identification and isolation of a 140 kD cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40:191–198 Rigby, P.W.J., Dieckmann, M., Rhodes, C., Berg, P. (1977). Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113:237–251 Rindi, G., Buffa, R., Sessa, F., Tortora, O., Solcia, E. (1986). Chromogranin A, B, and C immunoreactivity of Mammalian endocrine cells. Distribution, distinction from co-stored hormones/prohormones and relationship with the argyrophil content of secretory granules. Histochemistry 85:19–28 Rosa, P., Hille, A., Lee, R.W.H., Zanini, A., De Camilli, P., Huttner, W.B. (1985). Secretogranins I and II: Two tyrosine-sulfated secretory proteins common to a variety of cells secreting peptides by the regulated pathway. J. Cell. Biol. 101:1999–2011. Rundle, S., Somogyi, P., Fischer-Colbrie, R., Hagn, C., Winkler, H., Chubb, I.W. (1986). Chromogranin A, B, and C: Immunohistochemical localization in ovine pituitary and the relationship with hormone containing cells. Regul. Pept. 16:217–233. Ruoslahti, E., Pierschbacher, M.D. (1986). Arg-Gly-Asp: A versatile cell recognition signal. Cell 44:517–518 Sanger, F., Nicklen, S., Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74:5463–5467 Sargan, D.R., Gregory, S.P., Butterworth, P.H.W. (1982). A possible novel interaction between the 3′-end of 18S rRNA and the 5′-leader sequence of many eukaryotic mRNAs. FEBS Lett. 147:133–136 Schmechel, D.E., Marangos, P.J. (1983). Neuron-specific enolase (NSE): Specific cellular and functional marker for neurons and neuroendocrine cells. Current Methods in Cellular Neurobiology. J.L. Barker, J.G. McKelvy (eds). John Wiley. New York, pp 1–62 Schibler, K., Tosi, M., Pittel, A.C., Fabiani, L., Wellauer, P.K. (1980). Tissue-specific expression of mouse α-amylase genes. J. Mol. Biol. 142:93–116 Staeheli, P., Haller, O., Boll, W., Lindenmann, J., Weissmann, C. (1986). Mx protein: Constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus-resistant mice. Cell 44:147–158 Tatemoto, K., Efendic, S., Mutt, V., Makk, G., Feistner, G.J., Barchas, J.D. (1986). Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature 324:476–478 Thomas, P.S. (1980). Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. U.S.A. 77:5201–5205 Tsou, A.P., Lai, C., Danielson, P., Noonan, D.J., Sutcliffe, J.G. (1986). Structural characterization of heterogeneous family of rat brain mRNAs. Mol. Cell. Biol. 6:768–778