The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy
Tài liệu tham khảo
Ciechanover, 2015, The unravelling of the ubiquitin system, Nat. Rev. Mol. Cell Biol., 16, 322, 10.1038/nrm3982
Ciechanover, 2015, Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies, Exp. Mol. Med., 47, e147, 10.1038/emm.2014.117
Ciechanover, 2017, Protein quality control by molecular chaperones in neurodegeneration, Front. Neurosci., 11, 185, 10.3389/fnins.2017.00185
Cha-Molstad, 2015, Amino-terminal arginylation targets endoplasmic reticulum chaperone bip for autophagy through p62 binding, Nat. Cell Biol., 17, 917, 10.1038/ncb3177
Hershko, 1998, The ubiquitin system, Annu. Rev. Biochem., 67, 425, 10.1146/annurev.biochem.67.1.425
Rock, 1994, Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules, Cell, 78, 761, 10.1016/S0092-8674(94)90462-6
Grice, 2016, The recognition of ubiquitinated proteins by the proteasome, Cell. Mol. Life Sci., 73, 3497, 10.1007/s00018-016-2255-5
Scott, 2015, Ubiquitin-binding domains: mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes, Proteomics, 15, 844, 10.1002/pmic.201400341
Deng, 2017, Autophagy receptors and neurodegenerative diseases, Trends Cell. Biol., 27, 491, 10.1016/j.tcb.2017.01.001
Ciechanover, 2013, Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting, Bioorg. Med. Chem., 21, 3400, 10.1016/j.bmc.2013.01.056
Wang, 2012, Ubiquitination of substrates by esterification, Traffic, 13, 19, 10.1111/j.1600-0854.2011.01269.x
Bhogaraju, 2016, Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination, Cell, 167, 1636, 10.1016/j.cell.2016.11.019
Nordgren, 2015, Export-deficient monoubiquitinated pex5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts, Autophagy, 11, 1326, 10.1080/15548627.2015.1061846
Ohtake, 2017, The emerging complexity of ubiquitin architecture, J. Biochem., 161, 125
Swatek, 2016, Ubiquitin modifications, Cell Res., 26, 399, 10.1038/cr.2016.39
Yau, 2016, The increasing complexity of the ubiquitin code, Nat. Cell Biol., 18, 579, 10.1038/ncb3358
Kim, 2011, Systematic and quantitative assessment of the ubiquitin-modified proteome, Mol. Cell, 44, 325, 10.1016/j.molcel.2011.08.025
Livneh, 2017, Monoubiquitination joins polyubiquitination as an esteemed proteasomal targeting signal, Bioessays, 39, 10.1002/bies.201700027
Braten, 2016, Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination, Proc. Natl. Acad. Sci. U. S. A., 113, E4639, 10.1073/pnas.1608644113
Dwane, 2017, The emerging role of non-traditional ubiquitination in oncogenic pathways, J. Biol. Chem., 292, 3543, 10.1074/jbc.R116.755694
Akutsu, 2016, Ubiquitin chain diversity at a glance, J. Cell Sci., 129, 875, 10.1242/jcs.183954
Pickart, 2004, Polyubiquitin chains: polymeric protein signals, Curr. Opin. Chem. Biol., 8, 610, 10.1016/j.cbpa.2004.09.009
Yang, 2009, The E3 ligase traf6 regulates akt ubiquitination and activation, Science, 325, 1134, 10.1126/science.1175065
Lim, 2015, Neuronal aggregates: formation, clearance, and spreading, Dev. Cell, 32, 491, 10.1016/j.devcel.2015.02.002
Leznicki, 2017, Mechanisms of regulation and diversification of deubiquitylating enzyme function, J. Cell Sci., 130, 1997, 10.1242/jcs.201855
Lam, 1997, Editing of ubiquitin conjugates by an isopeptidase in the 26s proteasome, Nature, 385, 737, 10.1038/385737a0
Finley, 2016, Gates, channels, and switches: elements of the proteasome machine, Trends Biochem. Sci., 41, 77, 10.1016/j.tibs.2015.10.009
Livneh, 2016, The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death, Cell Res., 26, 869, 10.1038/cr.2016.86
Morris, 2017, SUMO in the DNA double-stranded break response: similarities, differences, and cooperation with ubiquitin, J. Mol. Biol., 10.1016/j.jmb.2017.05.012
Seeler, 2017, Sumo and the robustness of cancer, Nat. Rev. Cancer, 17, 184, 10.1038/nrc.2016.143
Wang, 2017, Ubiquitin-like modifications in the DNA damage response, Mutat. Res., 10.1016/j.mrfmmm.2017.07.001
Hendriks, 2014, Uncovering global sumoylation signaling networks in a site-specific manner, Nat. Struct. Mol. Biol., 21, 927, 10.1038/nsmb.2890
Sriramachandran, 2014, Sumo-targeted ubiquitin ligases, Biochim. Biophys. Acta, 1843, 75, 10.1016/j.bbamcr.2013.08.022
Hendriks, 2016, A comprehensive compilation of sumo proteomics, Nat. Rev. Mol. Cell Biol., 17, 581, 10.1038/nrm.2016.81
Pichler, 2017, Sumo conjugation – a mechanistic view, Biomol. Concepts, 8, 13, 10.1515/bmc-2016-0030
Yamano, 2016, The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation, EMBO Rep., 17, 300, 10.15252/embr.201541486
Ordureau, 2014, Quantitative proteomics reveal a feedforward mechanism for mitochondrial parkin translocation and ubiquitin chain synthesis, Mol. Cell, 56, 360, 10.1016/j.molcel.2014.09.007
Swaney, 2015, Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover, EMBO Rep., 16, 1131, 10.15252/embr.201540298
Koyano, 2014, Ubiquitin is phosphorylated by pink1 to activate parkin, Nature, 510, 162, 10.1038/nature13392
Lazarou, 2015, The ubiquitin kinase pink1 recruits autophagy receptors to induce mitophagy, Nature, 524, 309, 10.1038/nature14893
Ordureau, 2015, Defining roles of parkin and ubiquitin phosphorylation by pink1 in mitochondrial quality control using a ubiquitin replacement strategy, Proc. Natl. Acad. Sci. U. S. A., 112, 6637, 10.1073/pnas.1506593112
Heo, 2015, The pink1–parkin mitochondrial ubiquitylation pathway drives a program of optn/ndp52 recruitment and tbk1 activation to promote mitophagy, Mol. Cell, 60, 7, 10.1016/j.molcel.2015.08.016
Ohtake, 2015, Ubiquitin acetylation inhibits polyubiquitin chain elongation, EMBO Rep., 16, 192, 10.15252/embr.201439152
Yang, 2017, Ubiquitin modification by the E3 ligase/ADP-ribosyltransferase dtx3l/parp9, Mol. Cell, 66, 503, 10.1016/j.molcel.2017.04.028
Nguyen, 2017, Ube2o remodels the proteome during terminal erythroid differentiation, Science, 357, eaan0218, 10.1126/science.aan0218
Zhang, 2015, Atm functions at the peroxisome to induce pexophagy in response to ros, Nat. Cell Biol., 17, 1259, 10.1038/ncb3230
Collins, 2017, The logic of the 26S proteasome, Cell, 169, 792, 10.1016/j.cell.2017.04.023
Xu, 2009, Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation, Cell, 137, 133, 10.1016/j.cell.2009.01.041
Ziv, 2011, A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis, Mol. Cell. Proteomics, 10, 10.1074/mcp.M111.009753
Tsuchiya, 2017, In vivo ubiquitin linkage-type analysis reveals that the cdc48–rad23/dsk2 axis contributes to K48-linked chain specificity of the proteasome, Mol. Cell, 66, 488, 10.1016/j.molcel.2017.04.024
Brown, 2016, Dual ring E3 architectures regulate multiubiquitination and ubiquitin chain elongation by apc/c, Cell, 165, 1440, 10.1016/j.cell.2016.05.037
Lu, 2015, Specificity of the anaphase-promoting complex: a single-molecule study, Science, 348, 10.1126/science.1248737
Meyer, 2014, Enhanced protein degradation by branched ubiquitin chains, Cell, 157, 910, 10.1016/j.cell.2014.03.037
Mevissen, 2013, Otu deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis, Cell, 154, 169, 10.1016/j.cell.2013.05.046
French, 2017, Mechanism of ubiquitin chain synthesis employed by a hect ubiquitin ligase, J. Biol. Chem., 292, 10398, 10.1074/jbc.M117.789479
Locke, 2014, Lys11- and lys48-linked ubiquitin chains interact with p97 during endoplasmic-reticulum-associated degradation, Biochem. J., 459, 205, 10.1042/BJ20120662
Bremm, 2014, Cezanne (otud7b) regulates HIF-1alpha homeostasis in a proteasome-independent manner, EMBO Rep., 15, 1268, 10.15252/embr.201438850
Qin, 2014, Rnf26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms, PLoS Pathog., 10, e1004358, 10.1371/journal.ppat.1004358
Grice, 2015, The proteasome distinguishes between heterotypic and homotypic lysine-11-linked polyubiquitin chains, Cell Rep., 12, 545, 10.1016/j.celrep.2015.06.061
Martinez-Fonts, 2016, A rapid and versatile method for generating proteins with defined ubiquitin chains, Biochemistry, 55, 1898, 10.1021/acs.biochem.5b01310
Kristariyanto, 2015, Assembly and structure of lys33-linked polyubiquitin reveals distinct conformations, Biochem. J., 467, 345, 10.1042/BJ20141502
Michel, 2015, Assembly and specific recognition of K29- and K33-linked polyubiquitin, Mol. Cell, 58, 95, 10.1016/j.molcel.2015.01.042
Yu, 2016, Lys29-linkage of ask1 by skp1–cullin 1–fbxo21 ubiquitin ligase complex is required for antiviral innate response, Elife, 5, e14087, 10.7554/eLife.14087
Johnson, 1995, A proteolytic pathway that recognizes ubiquitin as a degradation signal, J. Biol. Chem., 270, 17442, 10.1074/jbc.270.29.17442
Koegl, 1999, A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly, Cell, 96, 635, 10.1016/S0092-8674(00)80574-7
Liu, 2017, Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains, Nat. Commun., 8, 14274, 10.1038/ncomms14274
Richly, 2005, A series of ubiquitin binding factors connects cdc48/p97 to substrate multiubiquitylation and proteasomal targeting, Cell, 120, 73, 10.1016/j.cell.2004.11.013
Hwang, 2010, The N-end rule pathway is mediated by a complex of the ring-type ubr1 and hect-type ufd4 ubiquitin ligases, Nat. Cell Biol., 12, 1177, 10.1038/ncb2121
Thrower, 2000, Recognition of the polyubiquitin proteolytic signal, EMBO J., 19, 94, 10.1093/emboj/19.1.94
Lander, 2012, Complete subunit architecture of the proteasome regulatory particle, Nature, 482, 186, 10.1038/nature10774
Sakata, 2012, Localization of the proteasomal ubiquitin receptors rpn10 and rpn13 by electron cryomicroscopy, Proc. Natl. Acad. Sci. U. S. A., 109, 1479, 10.1073/pnas.1119394109
Lasker, 2012, Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach, Proc. Natl. Acad. Sci. U. S. A., 109, 1380, 10.1073/pnas.1120559109
Dimova, 2012, Apc/c-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin b1, Nat. Cell Biol., 14, 168, 10.1038/ncb2425
Lu, 2015, Substrate degradation by the proteasome: a single-molecule kinetic analysis, Science, 348, 10.1126/science.1250834
Kim, 2013, The N-end rule proteolytic system in autophagy, Autophagy, 9, 1100, 10.4161/auto.24643
Ouyang, 2012, Protein aggregates are recruited to aggresome by histone deacetylase 6 via unanchored ubiquitin C termini, J. Biol. Chem., 287, 2317, 10.1074/jbc.M111.273730
Olzmann, 2007, Parkin-mediated K63-linked polyubiquitination targets misfolded dj-1 to aggresomes via binding to hdac6, J. Cell Biol., 178, 1025, 10.1083/jcb.200611128
Wenzel, 2011, Ubch7 reactivity profile reveals parkin and hhari to be ring/hect hybrids, Nature, 474, 105, 10.1038/nature09966
Matsumoto, 2011, Serine 403 phosphorylation of p62/sqstm1 regulates selective autophagic clearance of ubiquitinated proteins, Mol. Cell, 44, 279, 10.1016/j.molcel.2011.07.039
Lim, 2005, Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for lewy body formation, J. Neurosci., 25, 2002, 10.1523/JNEUROSCI.4474-04.2005
Papadopoulos, 2017, Vcp/p97 cooperates with yod1, ubxd1 and plaa to drive clearance of ruptured lysosomes by autophagy, EMBO J., 36, 135, 10.15252/embj.201695148
Nathan, 2013, Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?, EMBO J., 32, 552, 10.1038/emboj.2012.354
Lu, 2017, Receptor oligomerization guides pathway choice between proteasomal and autophagic degradation, Nat. Cell Biol., 19, 732, 10.1038/ncb3531
Sriram, 2011, The N-end rule pathway: emerging functions and molecular principles of substrate recognition, Nat. Rev. Mol. Cell Biol., 12, 735, 10.1038/nrm3217
Tasaki, 2012, The N-end rule pathway, Annu. Rev. Biochem., 81, 261, 10.1146/annurev-biochem-051710-093308
Cha-Molstad, 2017, P62/sqstm1/sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis, Nat. Commun., 8, 102, 10.1038/s41467-017-00085-7
Cha-Molstad, 2016, Modulation of sqstm1/p62 activity by N-terminal arginylation of the endoplasmic reticulum chaperone hspa5/grp78/bip, Autophagy, 12, 426, 10.1080/15548627.2015.1126047
Durcan, 2014, Usp8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin, EMBO J., 33, 2473, 10.15252/embj.201489729
Cunningham, 2015, Usp30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria, Nat. Cell Biol., 17, 160, 10.1038/ncb3097
Kane, 2014, Pink1 phosphorylates ubiquitin to activate parkin E3 ubiquitin ligase activity, J. Cell Biol., 205, 143, 10.1083/jcb.201402104
Kazlauskaite, 2014, Parkin is activated by pink1-dependent phosphorylation of ubiquitin at ser65, Biochem. J., 460, 127, 10.1042/BJ20140334
Richter, 2016, Phosphorylation of optn by tbk1 enhances its binding to ub chains and promotes selective autophagy of damaged mitochondria, Proc. Natl. Acad. Sci. U. S. A., 113, 4039, 10.1073/pnas.1523926113
Randow, 2014, Self and nonself: how autophagy targets mitochondria and bacteria, Cell Host Microbe, 15, 403, 10.1016/j.chom.2014.03.012
Bingol, 2014, The mitochondrial deubiquitinase usp30 opposes parkin-mediated mitophagy, Nature, 510, 370, 10.1038/nature13418
Liang, 2015, Usp30 deubiquitylates mitochondrial parkin substrates and restricts apoptotic cell death, EMBO Rep., 16, 618, 10.15252/embr.201439820
Komander, 2012, The ubiquitin code, Annu. Rev. Biochem., 81, 203, 10.1146/annurev-biochem-060310-170328
Kulathu, 2012, Atypical ubiquitylation – the unexplored world of polyubiquitin beyond lys48 and lys63 linkages, Nat. Rev. Mol. Cell Biol., 13, 508, 10.1038/nrm3394
Gatti, 2015, Rnf168 promotes noncanonical K27 ubiquitination to signal DNA damage, Cell Rep., 10, 226, 10.1016/j.celrep.2014.12.021
Iwai, 2012, Diverse ubiquitin signaling in NF-kappaB activation, Trends Cell Biol., 22, 355, 10.1016/j.tcb.2012.04.001
Liu, 2014, Ubiquitylation of autophagy receptor optineurin by hace1 activates selective autophagy for tumor suppression, Cancer Cell, 26, 106, 10.1016/j.ccr.2014.05.015
Wang, 2014, The e3 ubiquitin ligase amfr and insig1 bridge the activation of tbk1 kinase by modifying the adaptor sting, Immunity, 41, 919, 10.1016/j.immuni.2014.11.011
Besche, 2014, Autoubiquitination of the 26S proteasome on rpn13 regulates breakdown of ubiquitin conjugates, EMBO J., 33, 1159, 10.1002/embj.201386906
Jin, 2016, Epigenetic regulation of the expression of IL12 and IL23 and autoimmune inflammation by the deubiquitinase trabid, Nat. Immunol., 17, 259, 10.1038/ni.3347
Fei, 2013, Smurf1-mediated lys29-linked nonproteolytic polyubiquitination of axin negatively regulates wnt/beta-catenin signaling, Mol. Cell. Biol., 33, 4095, 10.1128/MCB.00418-13
Kim, 2013, Identification of a novel anti-apoptotic E3 ubiquitin ligase that ubiquitinates antagonists of inhibitor of apoptosis proteins smac, htra2, and arts, J. Biol. Chem., 288, 12014, 10.1074/jbc.M112.436113
Yuan, 2014, K33-linked polyubiquitination of coronin 7 by cul3-klhl20 ubiquitin E3 ligase regulates protein trafficking, Mol. Cell, 54, 586, 10.1016/j.molcel.2014.03.035
Huang, 2010, K33-linked polyubiquitination of T cell receptor-zeta regulates proteolysis-independent T cell signaling, Immunity, 33, 60, 10.1016/j.immuni.2010.07.002
Sasaki, 2015, Roles of linear ubiquitinylation, a crucial regulator of NF-kappaB and cell death, in the immune system, Immunol. Rev., 266, 175, 10.1111/imr.12308
Iwai, 2014, Linear ubiquitin chains: NF-kappaB signalling, cell death and beyond, Nat. Rev. Mol. Cell Biol., 15, 503, 10.1038/nrm3836
Emmerich, 2013, Activation of the canonical ikk complex by K63/M1-linked hybrid ubiquitin chains, Proc. Natl. Acad. Sci. U. S. A., 110, 15247, 10.1073/pnas.1314715110