The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy

Trends in Biochemical Sciences - Tập 42 - Trang 873-886 - 2017
Yong Tae Kwon1,2, Aaron Ciechanover1,3
1Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Korea
2Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799, Korea
3Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel

Tài liệu tham khảo

Ciechanover, 2015, The unravelling of the ubiquitin system, Nat. Rev. Mol. Cell Biol., 16, 322, 10.1038/nrm3982 Ciechanover, 2015, Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies, Exp. Mol. Med., 47, e147, 10.1038/emm.2014.117 Ciechanover, 2017, Protein quality control by molecular chaperones in neurodegeneration, Front. Neurosci., 11, 185, 10.3389/fnins.2017.00185 Cha-Molstad, 2015, Amino-terminal arginylation targets endoplasmic reticulum chaperone bip for autophagy through p62 binding, Nat. Cell Biol., 17, 917, 10.1038/ncb3177 Hershko, 1998, The ubiquitin system, Annu. Rev. Biochem., 67, 425, 10.1146/annurev.biochem.67.1.425 Rock, 1994, Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules, Cell, 78, 761, 10.1016/S0092-8674(94)90462-6 Grice, 2016, The recognition of ubiquitinated proteins by the proteasome, Cell. Mol. Life Sci., 73, 3497, 10.1007/s00018-016-2255-5 Scott, 2015, Ubiquitin-binding domains: mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes, Proteomics, 15, 844, 10.1002/pmic.201400341 Deng, 2017, Autophagy receptors and neurodegenerative diseases, Trends Cell. Biol., 27, 491, 10.1016/j.tcb.2017.01.001 Ciechanover, 2013, Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting, Bioorg. Med. Chem., 21, 3400, 10.1016/j.bmc.2013.01.056 Wang, 2012, Ubiquitination of substrates by esterification, Traffic, 13, 19, 10.1111/j.1600-0854.2011.01269.x Bhogaraju, 2016, Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination, Cell, 167, 1636, 10.1016/j.cell.2016.11.019 Nordgren, 2015, Export-deficient monoubiquitinated pex5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts, Autophagy, 11, 1326, 10.1080/15548627.2015.1061846 Ohtake, 2017, The emerging complexity of ubiquitin architecture, J. Biochem., 161, 125 Swatek, 2016, Ubiquitin modifications, Cell Res., 26, 399, 10.1038/cr.2016.39 Yau, 2016, The increasing complexity of the ubiquitin code, Nat. Cell Biol., 18, 579, 10.1038/ncb3358 Kim, 2011, Systematic and quantitative assessment of the ubiquitin-modified proteome, Mol. Cell, 44, 325, 10.1016/j.molcel.2011.08.025 Livneh, 2017, Monoubiquitination joins polyubiquitination as an esteemed proteasomal targeting signal, Bioessays, 39, 10.1002/bies.201700027 Braten, 2016, Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination, Proc. Natl. Acad. Sci. U. S. A., 113, E4639, 10.1073/pnas.1608644113 Dwane, 2017, The emerging role of non-traditional ubiquitination in oncogenic pathways, J. Biol. Chem., 292, 3543, 10.1074/jbc.R116.755694 Akutsu, 2016, Ubiquitin chain diversity at a glance, J. Cell Sci., 129, 875, 10.1242/jcs.183954 Pickart, 2004, Polyubiquitin chains: polymeric protein signals, Curr. Opin. Chem. Biol., 8, 610, 10.1016/j.cbpa.2004.09.009 Yang, 2009, The E3 ligase traf6 regulates akt ubiquitination and activation, Science, 325, 1134, 10.1126/science.1175065 Lim, 2015, Neuronal aggregates: formation, clearance, and spreading, Dev. Cell, 32, 491, 10.1016/j.devcel.2015.02.002 Leznicki, 2017, Mechanisms of regulation and diversification of deubiquitylating enzyme function, J. Cell Sci., 130, 1997, 10.1242/jcs.201855 Lam, 1997, Editing of ubiquitin conjugates by an isopeptidase in the 26s proteasome, Nature, 385, 737, 10.1038/385737a0 Finley, 2016, Gates, channels, and switches: elements of the proteasome machine, Trends Biochem. Sci., 41, 77, 10.1016/j.tibs.2015.10.009 Livneh, 2016, The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death, Cell Res., 26, 869, 10.1038/cr.2016.86 Morris, 2017, SUMO in the DNA double-stranded break response: similarities, differences, and cooperation with ubiquitin, J. Mol. Biol., 10.1016/j.jmb.2017.05.012 Seeler, 2017, Sumo and the robustness of cancer, Nat. Rev. Cancer, 17, 184, 10.1038/nrc.2016.143 Wang, 2017, Ubiquitin-like modifications in the DNA damage response, Mutat. Res., 10.1016/j.mrfmmm.2017.07.001 Hendriks, 2014, Uncovering global sumoylation signaling networks in a site-specific manner, Nat. Struct. Mol. Biol., 21, 927, 10.1038/nsmb.2890 Sriramachandran, 2014, Sumo-targeted ubiquitin ligases, Biochim. Biophys. Acta, 1843, 75, 10.1016/j.bbamcr.2013.08.022 Hendriks, 2016, A comprehensive compilation of sumo proteomics, Nat. Rev. Mol. Cell Biol., 17, 581, 10.1038/nrm.2016.81 Pichler, 2017, Sumo conjugation – a mechanistic view, Biomol. Concepts, 8, 13, 10.1515/bmc-2016-0030 Yamano, 2016, The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation, EMBO Rep., 17, 300, 10.15252/embr.201541486 Ordureau, 2014, Quantitative proteomics reveal a feedforward mechanism for mitochondrial parkin translocation and ubiquitin chain synthesis, Mol. Cell, 56, 360, 10.1016/j.molcel.2014.09.007 Swaney, 2015, Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover, EMBO Rep., 16, 1131, 10.15252/embr.201540298 Koyano, 2014, Ubiquitin is phosphorylated by pink1 to activate parkin, Nature, 510, 162, 10.1038/nature13392 Lazarou, 2015, The ubiquitin kinase pink1 recruits autophagy receptors to induce mitophagy, Nature, 524, 309, 10.1038/nature14893 Ordureau, 2015, Defining roles of parkin and ubiquitin phosphorylation by pink1 in mitochondrial quality control using a ubiquitin replacement strategy, Proc. Natl. Acad. Sci. U. S. A., 112, 6637, 10.1073/pnas.1506593112 Heo, 2015, The pink1–parkin mitochondrial ubiquitylation pathway drives a program of optn/ndp52 recruitment and tbk1 activation to promote mitophagy, Mol. Cell, 60, 7, 10.1016/j.molcel.2015.08.016 Ohtake, 2015, Ubiquitin acetylation inhibits polyubiquitin chain elongation, EMBO Rep., 16, 192, 10.15252/embr.201439152 Yang, 2017, Ubiquitin modification by the E3 ligase/ADP-ribosyltransferase dtx3l/parp9, Mol. Cell, 66, 503, 10.1016/j.molcel.2017.04.028 Nguyen, 2017, Ube2o remodels the proteome during terminal erythroid differentiation, Science, 357, eaan0218, 10.1126/science.aan0218 Zhang, 2015, Atm functions at the peroxisome to induce pexophagy in response to ros, Nat. Cell Biol., 17, 1259, 10.1038/ncb3230 Collins, 2017, The logic of the 26S proteasome, Cell, 169, 792, 10.1016/j.cell.2017.04.023 Xu, 2009, Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation, Cell, 137, 133, 10.1016/j.cell.2009.01.041 Ziv, 2011, A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis, Mol. Cell. Proteomics, 10, 10.1074/mcp.M111.009753 Tsuchiya, 2017, In vivo ubiquitin linkage-type analysis reveals that the cdc48–rad23/dsk2 axis contributes to K48-linked chain specificity of the proteasome, Mol. Cell, 66, 488, 10.1016/j.molcel.2017.04.024 Brown, 2016, Dual ring E3 architectures regulate multiubiquitination and ubiquitin chain elongation by apc/c, Cell, 165, 1440, 10.1016/j.cell.2016.05.037 Lu, 2015, Specificity of the anaphase-promoting complex: a single-molecule study, Science, 348, 10.1126/science.1248737 Meyer, 2014, Enhanced protein degradation by branched ubiquitin chains, Cell, 157, 910, 10.1016/j.cell.2014.03.037 Mevissen, 2013, Otu deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis, Cell, 154, 169, 10.1016/j.cell.2013.05.046 French, 2017, Mechanism of ubiquitin chain synthesis employed by a hect ubiquitin ligase, J. Biol. Chem., 292, 10398, 10.1074/jbc.M117.789479 Locke, 2014, Lys11- and lys48-linked ubiquitin chains interact with p97 during endoplasmic-reticulum-associated degradation, Biochem. J., 459, 205, 10.1042/BJ20120662 Bremm, 2014, Cezanne (otud7b) regulates HIF-1alpha homeostasis in a proteasome-independent manner, EMBO Rep., 15, 1268, 10.15252/embr.201438850 Qin, 2014, Rnf26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms, PLoS Pathog., 10, e1004358, 10.1371/journal.ppat.1004358 Grice, 2015, The proteasome distinguishes between heterotypic and homotypic lysine-11-linked polyubiquitin chains, Cell Rep., 12, 545, 10.1016/j.celrep.2015.06.061 Martinez-Fonts, 2016, A rapid and versatile method for generating proteins with defined ubiquitin chains, Biochemistry, 55, 1898, 10.1021/acs.biochem.5b01310 Kristariyanto, 2015, Assembly and structure of lys33-linked polyubiquitin reveals distinct conformations, Biochem. J., 467, 345, 10.1042/BJ20141502 Michel, 2015, Assembly and specific recognition of K29- and K33-linked polyubiquitin, Mol. Cell, 58, 95, 10.1016/j.molcel.2015.01.042 Yu, 2016, Lys29-linkage of ask1 by skp1–cullin 1–fbxo21 ubiquitin ligase complex is required for antiviral innate response, Elife, 5, e14087, 10.7554/eLife.14087 Johnson, 1995, A proteolytic pathway that recognizes ubiquitin as a degradation signal, J. Biol. Chem., 270, 17442, 10.1074/jbc.270.29.17442 Koegl, 1999, A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly, Cell, 96, 635, 10.1016/S0092-8674(00)80574-7 Liu, 2017, Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains, Nat. Commun., 8, 14274, 10.1038/ncomms14274 Richly, 2005, A series of ubiquitin binding factors connects cdc48/p97 to substrate multiubiquitylation and proteasomal targeting, Cell, 120, 73, 10.1016/j.cell.2004.11.013 Hwang, 2010, The N-end rule pathway is mediated by a complex of the ring-type ubr1 and hect-type ufd4 ubiquitin ligases, Nat. Cell Biol., 12, 1177, 10.1038/ncb2121 Thrower, 2000, Recognition of the polyubiquitin proteolytic signal, EMBO J., 19, 94, 10.1093/emboj/19.1.94 Lander, 2012, Complete subunit architecture of the proteasome regulatory particle, Nature, 482, 186, 10.1038/nature10774 Sakata, 2012, Localization of the proteasomal ubiquitin receptors rpn10 and rpn13 by electron cryomicroscopy, Proc. Natl. Acad. Sci. U. S. A., 109, 1479, 10.1073/pnas.1119394109 Lasker, 2012, Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach, Proc. Natl. Acad. Sci. U. S. A., 109, 1380, 10.1073/pnas.1120559109 Dimova, 2012, Apc/c-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin b1, Nat. Cell Biol., 14, 168, 10.1038/ncb2425 Lu, 2015, Substrate degradation by the proteasome: a single-molecule kinetic analysis, Science, 348, 10.1126/science.1250834 Kim, 2013, The N-end rule proteolytic system in autophagy, Autophagy, 9, 1100, 10.4161/auto.24643 Ouyang, 2012, Protein aggregates are recruited to aggresome by histone deacetylase 6 via unanchored ubiquitin C termini, J. Biol. Chem., 287, 2317, 10.1074/jbc.M111.273730 Olzmann, 2007, Parkin-mediated K63-linked polyubiquitination targets misfolded dj-1 to aggresomes via binding to hdac6, J. Cell Biol., 178, 1025, 10.1083/jcb.200611128 Wenzel, 2011, Ubch7 reactivity profile reveals parkin and hhari to be ring/hect hybrids, Nature, 474, 105, 10.1038/nature09966 Matsumoto, 2011, Serine 403 phosphorylation of p62/sqstm1 regulates selective autophagic clearance of ubiquitinated proteins, Mol. Cell, 44, 279, 10.1016/j.molcel.2011.07.039 Lim, 2005, Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for lewy body formation, J. Neurosci., 25, 2002, 10.1523/JNEUROSCI.4474-04.2005 Papadopoulos, 2017, Vcp/p97 cooperates with yod1, ubxd1 and plaa to drive clearance of ruptured lysosomes by autophagy, EMBO J., 36, 135, 10.15252/embj.201695148 Nathan, 2013, Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?, EMBO J., 32, 552, 10.1038/emboj.2012.354 Lu, 2017, Receptor oligomerization guides pathway choice between proteasomal and autophagic degradation, Nat. Cell Biol., 19, 732, 10.1038/ncb3531 Sriram, 2011, The N-end rule pathway: emerging functions and molecular principles of substrate recognition, Nat. Rev. Mol. Cell Biol., 12, 735, 10.1038/nrm3217 Tasaki, 2012, The N-end rule pathway, Annu. Rev. Biochem., 81, 261, 10.1146/annurev-biochem-051710-093308 Cha-Molstad, 2017, P62/sqstm1/sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis, Nat. Commun., 8, 102, 10.1038/s41467-017-00085-7 Cha-Molstad, 2016, Modulation of sqstm1/p62 activity by N-terminal arginylation of the endoplasmic reticulum chaperone hspa5/grp78/bip, Autophagy, 12, 426, 10.1080/15548627.2015.1126047 Durcan, 2014, Usp8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin, EMBO J., 33, 2473, 10.15252/embj.201489729 Cunningham, 2015, Usp30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria, Nat. Cell Biol., 17, 160, 10.1038/ncb3097 Kane, 2014, Pink1 phosphorylates ubiquitin to activate parkin E3 ubiquitin ligase activity, J. Cell Biol., 205, 143, 10.1083/jcb.201402104 Kazlauskaite, 2014, Parkin is activated by pink1-dependent phosphorylation of ubiquitin at ser65, Biochem. J., 460, 127, 10.1042/BJ20140334 Richter, 2016, Phosphorylation of optn by tbk1 enhances its binding to ub chains and promotes selective autophagy of damaged mitochondria, Proc. Natl. Acad. Sci. U. S. A., 113, 4039, 10.1073/pnas.1523926113 Randow, 2014, Self and nonself: how autophagy targets mitochondria and bacteria, Cell Host Microbe, 15, 403, 10.1016/j.chom.2014.03.012 Bingol, 2014, The mitochondrial deubiquitinase usp30 opposes parkin-mediated mitophagy, Nature, 510, 370, 10.1038/nature13418 Liang, 2015, Usp30 deubiquitylates mitochondrial parkin substrates and restricts apoptotic cell death, EMBO Rep., 16, 618, 10.15252/embr.201439820 Komander, 2012, The ubiquitin code, Annu. Rev. Biochem., 81, 203, 10.1146/annurev-biochem-060310-170328 Kulathu, 2012, Atypical ubiquitylation – the unexplored world of polyubiquitin beyond lys48 and lys63 linkages, Nat. Rev. Mol. Cell Biol., 13, 508, 10.1038/nrm3394 Gatti, 2015, Rnf168 promotes noncanonical K27 ubiquitination to signal DNA damage, Cell Rep., 10, 226, 10.1016/j.celrep.2014.12.021 Iwai, 2012, Diverse ubiquitin signaling in NF-kappaB activation, Trends Cell Biol., 22, 355, 10.1016/j.tcb.2012.04.001 Liu, 2014, Ubiquitylation of autophagy receptor optineurin by hace1 activates selective autophagy for tumor suppression, Cancer Cell, 26, 106, 10.1016/j.ccr.2014.05.015 Wang, 2014, The e3 ubiquitin ligase amfr and insig1 bridge the activation of tbk1 kinase by modifying the adaptor sting, Immunity, 41, 919, 10.1016/j.immuni.2014.11.011 Besche, 2014, Autoubiquitination of the 26S proteasome on rpn13 regulates breakdown of ubiquitin conjugates, EMBO J., 33, 1159, 10.1002/embj.201386906 Jin, 2016, Epigenetic regulation of the expression of IL12 and IL23 and autoimmune inflammation by the deubiquitinase trabid, Nat. Immunol., 17, 259, 10.1038/ni.3347 Fei, 2013, Smurf1-mediated lys29-linked nonproteolytic polyubiquitination of axin negatively regulates wnt/beta-catenin signaling, Mol. Cell. Biol., 33, 4095, 10.1128/MCB.00418-13 Kim, 2013, Identification of a novel anti-apoptotic E3 ubiquitin ligase that ubiquitinates antagonists of inhibitor of apoptosis proteins smac, htra2, and arts, J. Biol. Chem., 288, 12014, 10.1074/jbc.M112.436113 Yuan, 2014, K33-linked polyubiquitination of coronin 7 by cul3-klhl20 ubiquitin E3 ligase regulates protein trafficking, Mol. Cell, 54, 586, 10.1016/j.molcel.2014.03.035 Huang, 2010, K33-linked polyubiquitination of T cell receptor-zeta regulates proteolysis-independent T cell signaling, Immunity, 33, 60, 10.1016/j.immuni.2010.07.002 Sasaki, 2015, Roles of linear ubiquitinylation, a crucial regulator of NF-kappaB and cell death, in the immune system, Immunol. Rev., 266, 175, 10.1111/imr.12308 Iwai, 2014, Linear ubiquitin chains: NF-kappaB signalling, cell death and beyond, Nat. Rev. Mol. Cell Biol., 15, 503, 10.1038/nrm3836 Emmerich, 2013, Activation of the canonical ikk complex by K63/M1-linked hybrid ubiquitin chains, Proc. Natl. Acad. Sci. U. S. A., 110, 15247, 10.1073/pnas.1314715110