Effects of TiB2 particle size on the microstructure and mechanical properties of TiB2-based composites

Ceramics International - Tập 45 - Trang 1370-1378 - 2019
Ning Wu1, Fengdan Xue1, Hailin Yang1, Guoping Li1,2, Fenghua Luo1, Jianming Ruan1
1State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
2Laiwu Vocational and Technical College, Laiwu 271100, China

Tài liệu tham khảo

Ji, 2015, Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid, J. Eur. Ceram. Soc., 41, 14482 Wen, 2001, Reaction synthesis of TiB2-TiC composites with enhanced toughness, Acta Mater., 49, 1463, 10.1016/S1359-6454(01)00034-9 Demirskyi, 2015, High-strength TiB2-TaC ceramic composites prepared using reactive spark plasma consolidation, Ceram. Int., 42, 1298, 10.1016/j.ceramint.2015.09.065 Venkateswaran, 2006, Densification and properties of transition metal borides-based cermets via spark plasma sintering, J. Eur. Ceram. Soc., 26, 2431, 10.1016/j.jeurceramsoc.2005.05.011 Huang, 2012, Microstructure transformation and mechanical properties of TiC-TiB2 ceramics prepared by combustion synthesis in high gravity field, Mater. Sci. Eng. A, 553, 105, 10.1016/j.msea.2012.05.099 Huang, 2015, Interfacial plasticity of a TiB2-reinforced steel matrix composite fabricated by eutectic solidification, Scr. Mater., 99, 13, 10.1016/j.scriptamat.2014.11.015 Springer, 2015, Microstructure refinement for high modulus in-situ metal matrix composite steels via controlled solidification of the system Fe-TiB2, Acta Mater., 96, 47, 10.1016/j.actamat.2015.06.017 Cha, 2012, Interface structure and chemistry in a novel steel-based composite Fe-TiB2 obtained by eutectic solidification, Acta Mater., 60, 6382, 10.1016/j.actamat.2012.08.017 Yadav, 2015, Friction stir processing of Al-TiB2 in situ composite: effect on particle distribution, microstructure and properties, Acta Mater., 24, 1116 Zhao, 2014, A study on in-situ synthesis of TiB2-SiC ceramic composites by reactive hot pressing, Ceram. Int., 40, 2305, 10.1016/j.ceramint.2013.07.152 Heidari, 2012, Interaction of molten aluminum with porous TiB2-based ceramics containing Ti-Fe additives, J. Eur. Ceram. Soc., 32, 937, 10.1016/j.jeurceramsoc.2011.10.053 Feber, 1983, Effect of microstructure on the properties of TiB2 ceramics, J. Am. Ceram. Soc., 66, C2 Wang, 2002, Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics, J. Eur. Ceram. Soc., 22, 1045, 10.1016/S0955-2219(01)00424-1 Kang, 2001, Pressureless sintering and properties of titanium diboride ceramics containing chromium and iron, J. Am. Ceram. Soc., 84, 893, 10.1111/j.1151-2916.2001.tb00763.x Bača, 2012, Microstructure evolution and tribological properties of TiB2/Ni-Ta cermets, J. Eur. Ceram. Soc., 32, 1941, 10.1016/j.jeurceramsoc.2011.10.039 Zhou, 2012, First-principles studies of Ni-Ta intermetallic compounds, J. Solid State Chem., 187, 211, 10.1016/j.jssc.2012.01.001 Zhou, 2009, Solution-based thermodynamic modeling of the Ni-Ta and Ni-Mo-Ta systems using first-principle calculations, Calphad, 33, 631, 10.1016/j.calphad.2009.06.006 Cheng, 2014, Rod-like eutectic structure of arc-melted TiB2-TiCxN1-x composite, J. Eur. Ceram. Soc., 34, 2089, 10.1016/j.jeurceramsoc.2013.12.036 Hamdad, 2010, First principles calculation of electronic structure, bonding and chemical stability of TiB2, NbB2 and their ternary alloy Ti0.5Nb0.5B2, Physica B, 405, 540, 10.1016/j.physb.2009.09.061 Chlup, 2015, Effect of metallic dopants on the microstructure and mechanical properties of TiB2, J. Eur. Ceram. Soc., 35, 2745, 10.1016/j.jeurceramsoc.2015.03.027 Zhang, 2006, Microstructure and mechanical properties of TiB2/(Cu, Ni) interpenetrating phase composites, Scr. Mater., 55, 565, 10.1016/j.scriptamat.2006.04.048 Wen, 2001, Reaction synthesis of TiB2-TiC composites with enhanced toughness, Acta Mater., 49, 1463, 10.1016/S1359-6454(01)00034-9 Wu, 2017, Microstructure and mechanical properties of TiB2-based composites with high volume fraction of Fe-Ni additives prepared by vacuum pressureless sintering, Ceram. Int., 43, 1394, 10.1016/j.ceramint.2016.10.100 Xiong, 2018, New production of (Ti, W)C-based cermets toughened by in-situ formed WC and twinned (Ti, W)C platelets: carbonization of the Nix(Ti0.6, W0.4)4C-type η phases, J. Alloy. Compd., 731, 253, 10.1016/j.jallcom.2017.09.339 Schubert, 1998, Hardness to toughness relation-ship of fine-grained WC-Co hardmetals, Int. J. Refract. Met. Hard Mater., 16, 133, 10.1016/S0263-4368(98)00028-6 Li, 2002, Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering aid, J. Eur. Ceram. Soc., 22, 973, 10.1016/S0955-2219(01)00403-4 Schubert, 1995, General aspects and limits of conventional ultrafine WC powder manufacture and hard metal production, Int. J. Refract. Met. Hard Mater., 13, 281, 10.1016/0263-4368(95)92674-9 Sun, 2015, Effects of WC particle size on sintering behavior and mechanical properties of coarse grained WC-8Co cemented carbides fabricated by unmilled composite powders, Ceram. Int., 41, 14482, 10.1016/j.ceramint.2015.07.086 Mullins, 1986, The statistical self-similarity hypothesis in grain growth and particle coarsening, J. Appl. Phys., 59, 1341, 10.1063/1.336528 Streitenberger, 2015, The envelope of size distributions in Ostwald ripening and grain growth, Acta Mater., 88, 334, 10.1016/j.actamat.2015.01.035 Upadhyaya, 2001, Material science of cemented carbides-an overview, Mater. Des., 22, 483, 10.1016/S0261-3069(01)00007-3 Chabretou, 2002, Analysis of the evolution of the grain size distribution in WC-Co sintered materials with random set models, Mater. Sci. Eng. A, 328, 291, 10.1016/S0921-5093(01)01706-3 Liu, 2004, Effect of starting powders size on the Al2O3-TiC composites, Int. J. Refract. Met. Hard Mater., 22, 265, 10.1016/j.ijrmhm.2004.09.001 Yang, 2012, Microstructure and mechanical properties of in situ synthesized (TiB2+TiC)/Ti3SiC2 composites, Ceram. Int., 38, 649, 10.1016/j.ceramint.2011.06.066 Mukhopadhyay, 2013, Spark plasma sintering may lead to phase instability and inferior mechanical properties: a case study with TiB2, Scr. Mater., 69, 159, 10.1016/j.scriptamat.2013.02.027 Mukhopadhyay, 2009, Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics, J. Eur. Ceram. Soc., 29, 505, 10.1016/j.jeurceramsoc.2008.06.030 Wang, 2014, Effects of sintering processes on mechanical properties and microstructure of Ti(C,N)-TiB2-Ni composite ceramic cutting tool material, Ceram. Int., 40, 16513, 10.1016/j.ceramint.2014.08.003