Weakly Separated Spaces and Pixley–Roy Hyperspaces

Bulletin of the Iranian Mathematical Society - Tập 49 - Trang 1-25 - 2023
Alejandro Ríos-Herrejón1
1Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico

Tóm tắt

In this paper we obtain new results regarding the chain conditions in the Pixley–Roy hyperspaces $${\mathscr {F}\hspace{0mm}}[X]$$ . For example, if c(X) and R(X) denote the cellularity and weak separation number of X (see Sect. 4) and we define the cardinals $$\begin{aligned} c^* (X):= \sup \{c(X^{n}): n\in {\mathbb {N}}\} \quad \text {and} \quad R^{*}(X):= \sup \{R(X^{n}): n\in {\mathbb {N}}\}, \end{aligned}$$ then we show that $$R^{*}(X) = c^ {*}\left( {\mathscr {F}\hspace{0mm}}[X]\right) $$ . On the other hand, in Sakai (Topol Appl 159:3080–3088, 2012, Question 3.23, p. 3087) Sakai asked whether the fact that $${\mathscr {F}\hspace{0mm}}[X]$$ is weakly Lindelöf implies that X is hereditarily separable and proved that if X is countably tight then the previous question has an affirmative answer. We shall expand Sakai’s result by proving that if $${\mathscr {F}\hspace{0mm}}[X]$$ is weakly Lindelöf and X satisfies any of the following conditions: then X is hereditarily separable.

Tài liệu tham khảo

Creede, G.D.: Concerning semistratifiable spaces. Pac. J. Math. 32, 47–54 (1970) Engelking, R.: General Topology, Sigma Series in Pure Mathematics, vol. 6. Heldermann, Berlin (1989) Gerlits, J., Nagy, Z.S.: Some properties of \(C(X), I\). Topol. Appl. 14(2), 151–161 (1982) Hodel, R.: Cardinal functions I. In: Kuneny, K., Vaughan, J.E. (eds.) Handbook of Set-Theoretic Topology, pp. 1–61. North Holland, Amsterdam (1984) Hodel, R.E., Vaughan, J.E.: Reflection theorems for cardinal functions. Topol. Appl. 100, 47–66 (2000) Juhász, I.: Cardinal Functions in Topology-Ten Years Later, Math. Centre Tracts, vol. 123. Mathematical Centrum, Amsterdam (1980) Juhász, I., Shelah, S.: Generic left-separated spaces and calibers. Topol. Appl. 132, 103–108 (2003) Kunen, K. (1980) Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102. North-Holland, Amsterdam Lutzer, D.J.: Pixley–Roy topology. Topol. Proc. 3, 139–158 (1978) McIntyre, D.W.: A regular countable chain condition space without compact-caliber \((\omega _1,\omega )\). Ann. N. Y. Acad. Sci. 704(1), 269–272 (2006) Miller, A.W.: Descriptive Set Theory and Forcing: How to Prove Theorems about Borel Sets the Hard Way, Lecture Notes in Logic. Cambridge University Press, Cambridge (2017) Pixley, C., Roy, P.: Uncompletable Moore Spaces. In: Transue, W.R.R. (ed.) Proc. Auburn Univ. Conf., pp. 75–85 (1969) Ríos-Herrejón, A.: Singular precalibers for topological products. Topol. Appl. 317, 108190 (2022) Ríos-Herrejón, A., Tamariz-Mascarúa, Á.: Some notes on topological calibers, Preprint (2023). arXiv:2302.12408 Roy, N.M.: Is the product of ccc spaces a ccc space? Publ. Mat. 33, 173–183 (1989) Sakai, M.: Cardinal functions of Pixley–Roy hyperspaces. Topol. Appl. 159, 3080–3088 (2012) Sakai, S.: Cardinal functions on Pixley–Roy hyperspaces. Proc. Am. Math. Soc. 89(2), 336–340 (1983) Šanin, N.A.: On the product of topological spaces. Trudy Mat. Inst. Steklov. 24, 1–112 (1948) (in Russian) Šapirovskiĭ, B.: On discrete subspaces of topological spaces; weight, tightness and Suslin number. Sov. Math. Dokl. 13, 215–219 (1972) Shelah, S.: Remarks on cardinal invariants in topology. Gen. Topol. Appl. 7(3), 251–259 (1977) Tall, F.D.: The countable chain condition versus separability–applications of Martin’s axiom. Gen. Topol. Appl. 4, 315–339 (1974) Tkachenko, M.G.: Chains and cardinals. Dokl. Akad. Nauk SSSR 239(3) (1978) [Soviet Math. Dokl. 19(2), 382–385 (1978) (English translation)] Tkachuk, V.V.: A \(C_p\)-Theory Problem Book. Topological and Function Spaces. Problem Books in Mathematics. Springer, New York (2011) van Douwen, E.: The Pixley–Roy topology on spaces of subsets. In: Reed, G.M. (ed.) Set-Theoretic Topology, pp. 111–134. Academic Press, New York (1977) Wage, M.L.: Homogeneity of Pixley–Roy spaces. Topol. Appl. 28, 45–57 (1988)