Synthesis and characterization of electrical features of bismuth manganite and bismuth ferrite: effects of doping in cationic and anionic sublattice: Materials for applications

A. Molak1, D.K. Mahato2, A.Z. Szeremeta1
1Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
2Department of Physics, National Institute of Technology Patna, Patna, 800 005 Bihar, India

Tài liệu tham khảo

Fiebig, 2004 Khomskii, 2009, Classyfying multiferroics: Mechanisms and effects, Physics, 2, 1, 10.1103/Physics.2.20 Fiebig, 2009, Current trends of the magnetoelectric effect, Eur. Phys. J. B, 71, 293, 10.1140/epjb/e2009-00266-4 Hlinka, 2016, Symmetry guide to ferroaxial transitions, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.177602 Bèa, 2008, Spintronics with multiferroics, J. Phys.: Condens. Matter, 20 Bibes, 2008, Multiferroics: Towards a magnetoelectric memory, Nat. Mater, 7, 425, 10.1038/nmat2189 Vaz, 2010, Magnetoelectric coupling effects in multiferroic complex oxide composite structures, Adv. Mater., 22, 2900, 10.1002/adma.200904326 Haertling, 1999, Ferroelectric ceramics: History and technology, J. Am. Ceram. Soc., 82, 797, 10.1111/j.1151-2916.1999.tb01840.x Martin, 2012, Multiferroic and magnetoelectric heterostructures, Acta Mater, 60, 2449, 10.1016/j.actamat.2011.12.024 Seidel, 2010, Domain wall conductivity in La-doped BiFeO3, Phys. Rev. Lett, 105, 10.1103/PhysRevLett.105.197603 Genenko, 2008, Space-charge mechanism of aging in ferroelectrics: An analytically solvable two-dimensional model, Phys. Rev. B, 78, 10.1103/PhysRevB.78.214103 Salje, 2012, Ferroelastic Materials, Annu. Rev. Mater. Res., 42, 10.1146/annurev-matsci-070511-155022 Molak, 2001, Flattening of the electric permittivity curve ε(T) of NaNbO3:yMn single crystals caused by stress application, J. Phys.: Condens. Matter, 13, 9561 Kleemann, 2012, Disordered multiferroics, Solid State Phenom., 89, 41, 10.4028/www.scientific.net/SSP.189.41 Fuentes, 2007, Meso- and nano- magnetoelectricity: A review, Rev. Mex. Fis. S, 53, 21 Picozzi, 2012, Advances in ab-initio theory of multiferroics, Eur. Phys. J., B 85, 1 Hill, 2002, Why are there any magnetic ferroelectrics?, J. Magn. Magn. Mater., 242–245, 976, 10.1016/S0304-8853(01)01078-2 Astrov, 1960, The magnetoelectric effect in antiferromagnetics, JETP, 11, 1 Fiebig, 2005, Revival of the magnetoelectric effect, J. Phys. D: Appl. Phys., 38, R123, 10.1088/0022-3727/38/8/R01 Tokunaga, 2012, Studies on multiferroic materials in high magnetic fields, Front. Phys., 7, 386, 10.1007/s11467-011-0203-2 Wadhawan, 2000 Jia, 2007, Microscopic theory of spin-polarization coupling in multiferroic transition metal oxides, Phys. Rev. B, 76, 10.1103/PhysRevB.76.144424 Sergienko, 2006, Ferroelectricity in the magnetic E-phase of orthorhombic perovskites, Phys. Rev. Lett, 97, 10.1103/PhysRevLett.97.227204 Selbach, 2008, The ferroic phase transitions of BiFeO3, Adv. Mater., 20, 3692, 10.1002/adma.200800218 Dai, 2010, Electrical properties of multiferroic BiFeO3 ceramics synthesized by spark plasma sintering, J. Phys. D: Appl. Phys, 43, 10.1088/0022-3727/43/44/445403 Schmid, 2008, Some symmetry aspects of ferroics and single phase multiferroics, J. Phys.: Condens. Matter, 20 Wojdeł, 2009, Magnetoelectric response of multiferroic BiFeO3 and related materials from first-principles calculations, Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.267205 Schröder, 2015, Computation of non-linear magneto-electric product properties of 0-3 composites, GAMM-Mitt., 38, 8, 10.1002/gamm.201510002 Nan, 2008, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, J. Appl. Phys., 103, 10.1063/1.2836410 Catalan, 2009, Physics and applications of bismuth ferrite, Adv. Mater., 21, 2463, 10.1002/adma.200802849 Teague, 1970, Dielectric hysteresis in single crystal BiFeO3, Solid State Commun, 8, 1073, 10.1016/0038-1098(70)90262-0 Lebeugle, 2007, Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals, Phys. Rev. B, 76, 10.1103/PhysRevB.76.024116 Palewicz, 2007, Atomic displacements in BiFeO3 as a function of temperature: neutron diffraction study, Acta Crystallogr. B, 63, 537, 10.1107/S0108768107023956 Sosnowska, 1982, Spiral magnetic ordering in bismuth ferrite, J. Phys. C: Solid St. Phys, 15, 4835, 10.1088/0022-3719/15/23/020 Singh, 2008, Spin-glass transition in single-crystal BiFeO3, Phys. Rev. B, 77, 10.1103/PhysRevB.77.144403 Fischer, 1980, Temperature dependence of the crystal and magnetic structures of BiFeO3, J. Phys. C: Solid St. Phys., 13, 1931, 10.1088/0022-3719/13/10/012 Kumar, 2008, Large magnetization and weak polarization in sol–gel derived BiFeO3 ceramics, Mater. Lett., 62, 1159, 10.1016/j.matlet.2007.07.075 Sakar, 2013, Annealing temperature mediated physical properties of bismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method, Mater. Res. Bull., 48, 2878, 10.1016/j.materresbull.2013.04.008 Peng, 2011, Surfactant-free hydrothermal synthesis of submicron BiFeO3 powders, Appl. Phys. A, 103, 511, 10.1007/s00339-010-6024-2 Wang, 2009, Hydrothermal synthesis of single-crystal bismuth ferrite nanoflakes assisted by potassium nitrate, Ceram. Int., 35, 1285, 10.1016/j.ceramint.2008.04.016 Lubk, 2009, First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite, Phys. Rev. B, 80, 10.1103/PhysRevB.80.104110 Redfern, 2008, Elastic and electrical anomalies at low-temperature phase transitions in BiFeO3, J. Phys.: Condens. Mat., 20 Clark, 2007, Band gap and Schottky barrier heights of multiferroic BiFeO3, Appl. Phys. Lett., 90, 10.1063/1.2716868 Hauser, 2008, Characterization of electronic structure and defect states of thin epitaxial BiFeO3 films by UV-visible absorption and cathodoluminescence spectroscopies, Appl. Phys. Lett., 92, 10.1063/1.2939101 Mazumdar, 2006, Particle size dependence of magnetization and phase transition near TN in multiferroic BiFeO3, J. Appl. Phys., 100 Haumont, 2006, Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3, Phys. Rev. B, 73, 10.1103/PhysRevB.73.132101 Hunpratub, 2009, Dielectric relaxations and dielectric response in multiferroic BiFeO3 ceramics, Appl. Phys. Lett, 94, 10.1063/1.3078825 Andrzejewski, 2013, Field induced changes in cycloidal spin ordering and coincidence between magnetic and electric anomalies in BiFeO3 multiferroic, J. Magn. Magn. Mater., 342, 17, 10.1016/j.jmmm.2013.04.059 Ruette, 2004, Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order, Phys. Rev. B, 69, 10.1103/PhysRevB.69.064114 Belik, 2007, Origin of the monoclinic-to-monoclinic phase transition and evidence for the centrosymmetric crystal structure of BiMnO3, J. Am. Chem. Soc., 129, 971, 10.1021/ja0664032 Belik, 2012, Polar and nonpolar phases of BiMnO3: A review, J. Solid State Chem., 195, 32, 10.1016/j.jssc.2012.01.025 Bokov, 1966, Structure and magnetic properties of BiMnO3, Sov. Phys, Solid State, 7, 2993 Kimura, 2003, Magnetocapacitance effect in multiferroic BiMnO3, Phys. Rev. B., 67, 10.1103/PhysRevB.67.180401 Moreira dos Santos, 2002, Orbital ordering as the determinant for ferromagnetism in biferroic BiMnO3, Phys. Rev. B., 66, 10.1103/PhysRevB.66.064425 Chi, 2005, Manifestation of ferroelectromagnetism in multiferroic BiMnO3, J. Appl. Phys., 98, 10.1063/1.2131193 McLeod, 2010, Electronic structure of BiMO3 multiferroics and related oxides, Phys. Rev. B, 81, 10.1103/PhysRevB.81.144103 Bujakiewicz-Koronska, 2013, First principles calculations of ideal and defected BiMnO3, Phase Transit, 86, 167, 10.1080/01411594.2012.728399 Chiba, 1997, Magnetic and electrical properties of Bi1-xSrxMnO3: hole-doping effect on ferromagnetic perovskite BiMnO3, J. Solid St. Chem., 132, 139, 10.1006/jssc.1997.7432 Lee, 2010, Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy, Appl. Phys. Lett., 96, 10.1063/1.3457786 Troyanchuk, 1998, Magnetic and transport properties of some insulating manganites, Phys. Rev. B, 58, 2422, 10.1103/PhysRevB.58.2422 Goian, 2012, Absence of ferroelectricity in BiMnO3 ceramics, J. Appl. Phys., 112, 10.1063/1.4757944 Baettig, 2007, Anti-polarity in ideal BiMnO3, J. Am. Chem. Soc., 129, 9854, 10.1021/ja073415u Belik, 2010, Crystal and magnetic structures and properties of BiMnO3+δ, J. Am. Chem. Soc., 132, 8137, 10.1021/ja102014n Montanari, 2005, High-temperature polymorphism in metastable BiMnO3, Chem. Mater., 17, 6457, 10.1021/cm051576w Vanderah, 2006, Subsolidus phase equilibria and properties in the system Bi2O3:Mn2O3±x:Nb2O5, J. Solid State Chem., 179, 3467, 10.1016/j.jssc.2006.07.014 Sedmidubsk´y, 2006, Phase equilibria modeling in Bi2O3–SrO–MnOx system, CALPHAD, 30, 179, 10.1016/j.calphad.2005.09.003 Munoz, 2002, Magnetic structure and properties of BiMn2O5 oxide: A neutron diffraction study, Phys. Rev. B, 65, 10.1103/PhysRevB.65.144423 Li, 2011, Charge, orbital and spin ordering in multiferroic BiMn2O5: density functional theory calculations, Phys. Chem. Chem. Phys., 13, 9418, 10.1039/c0cp02252g Zhang, 2011, Origin of the multiferroicity in BiMn2O5 from first-principles calculations, J. Magn. Magn. Mat., 323, 1599, 10.1016/j.jmmm.2010.12.040 Valant, 2002, A stoichiometric model for sillenites, Chem. Mater., 14, 3471, 10.1021/cm021173l Wang, 2012, Hydrothermal growths, optical features and first-principles calculations of sillenite-type crystals comprising discrete MO4 tetrahedra, CrystEngComm, 14, 1063, 10.1039/C1CE06220D Molak, 2015, Electric current relaxation and resistance switching in non-homogeneous bismuth manganite, Ferroelectrics, 486, 161, 10.1080/00150193.2015.1061868 Pilch, 2017, Influence of nitrogen flow during sintering of bismuth manganite ceramics on grain morphology and surface disorder, Phase Transit., 90, 112, 10.1080/01411594.2016.1219737 Molak, 2013, Chemical capacitance proposed for manganite-based ceramics, Cond. Matter Phys., 16 Molak, 2014, Resistance switching induced in BiMnO3 ceramics, Ferroelectrics, 464, 59, 10.1080/00150193.2014.892815 Scott, 2008, Ferroelectrics go bananas, J. Phys.: Condens. Matter, 20 Azuma, 2007, Magnetic and structural properties of BiFe1-xMnxO3, J. Magn. Magn. Mater, 310, 1177, 10.1016/j.jmmm.2006.10.287 Belik, 2007, Magnetic and Mössbauer studies of 5% Fe-doped BiMnO3, J. Solid State Chem., 80 Yang, 2010, BiMnFe2O6, a polysynthetically twinned hcp MO structure, Chem. Sci., 1, 751, 10.1039/c0sc00348d Selbach, 2009, Structure and properties of multiferroic oxygen hyperstoichiometric BiFe1−xMnxO3+δ, Chem. Mater., 21, 5176, 10.1021/cm9021084 Ianculescu, 2010, The role of doping on the structural and functional properties of BiFe1−xMnxO3 magnetoelectric ceramics, J. Alloy. Compd., 504, 420, 10.1016/j.jallcom.2010.05.135 Leonarska, 2017, Electric relaxation and Mn3+/Mn4+ charge transfer in Fe-doped Bi12MnO20–BiMn2O5 structural self-composite, J. Mater. Sci., 52, 2222, 10.1007/s10853-016-0515-2 Bujakiewicz-Korońska, 2011, Investigations of low temperature phase transitions in BiFeO3 ceramic by infrared spectroscopy, Ferroelectrics, 417, 63, 10.1080/00150193.2011.578495 Suchanicz, 2015, Influence of uniaxial pressure on dielectric properties and aging effect of BiFeO3 ceramic, Ferroelectrics, 485, 116, 10.1080/00150193.2015.1061357 Dziubaniuk, 2013, Application of bismuth ferrite protonic conductor for ammonia gas detection, Sensors Actuators B: Chemical, 188, 957, 10.1016/j.snb.2013.08.020 Mahesh Kumar, 2000, Ferroelectricity in a pure BiFeO3 ceramic, Appl. Phys. Lett., 76 Ghosh, 2005, Low temperature synthesis of bismuth ferrite nanoparticles by a ferrioxalate precursor method, Mater. Res. Bull., 40, 2073, 10.1016/j.materresbull.2005.07.017 Chaudhuri, 2010, Nanostructured bismuth ferrites synthesized by solvothermal process, J. Alloys Compd., 491, 703, 10.1016/j.jallcom.2009.11.049 Vijayanand, 2009, Origin of high room temperature ferromagnetic moment of nanocrystalline multiferroic BiFeO3, Appl. Phys. Lett., 94, 10.1063/1.3132586 Selbach, 2007, Size-dependent properties of multiferroic BiFeO3 nanoparticles, Chem. Mater., 19, 6478, 10.1021/cm071827w Wang, 2008, Low temperature polymer assisted hydrothermal synthesis of bismuth ferrite nanoparticles, Ceram. Int., 34, 1569, 10.1016/j.ceramint.2007.04.013 Han, 2006, Tunable synthesis of bismuth ferrites with various morphologies, Adv. Mater., 18, 2145, 10.1002/adma.200600072 Chybczynska, 2016, Dielectric response and electric conductivity of ceramics obtained from BiFeO3 synthesized by microwave hydrothermal method, J. Alloy. Compd., 671, 493, 10.1016/j.jallcom.2016.02.104 Chybczynska, 2017, PEG-controlled thickness of BiFeO3 crystallites in microwave hydrothermal synthesis, Mater. Res. Bull., 86, 178, 10.1016/j.materresbull.2016.10.024 Selbach, 2009, On the thermodynamic stability of BiMnO3, Chem. Mater., 21, 169, 10.1021/cm802607p Belik, 2006, Magnetic properties of BiMnO3 studied with dc and ac magnetization and specific heat, Inorg. Chem., 45, 10224, 10.1021/ic061400b Toulemonde, 2009, Single crystal growth of BiMnO3 under high pressure-high temperature, High Pressure Res., 29, 600, 10.1080/08957950903467050 Samuel, 2007, Synthesis of ultrafine BiMnO3 particles at 100 oC, Mater. Lett., 61, 1050, 10.1016/j.matlet.2006.06.046 Yan, 2016, Resistive switching of single BiMnO3+δ, J. Mater. Sci-Mater. El., 27, 512, 10.1007/s10854-015-3782-9 Stanojević, 2011, Structural and magnetic properties of nanocrystalline bismuth manganite obtained by mechanochemical sythesis, J. Nanopart. Res, 13, 3431, 10.1007/s11051-011-0265-7 Mazumder, 2007, Bio-milling technique for the size reduction of chemically synthesized BiMnO3 nanoplates, J. Mater. Chem, 17, 3910, 10.1039/b706154d Eerenstein, 2005, Growth of highly resistive BiMnO3 films, Appl. Phys. Lett., 87, 10.1063/1.2039988 Nguyen, 1999, Distribution of Mn3+ and Mn4+ species between octahedral and square pyramidal sites in Bi2Mn4O10–type structure, J. Mater. Chem, 8, 731, 10.1039/a808094a Hu, 2013, Relaxor-like dielectric behavior in stoichiometric sillenite Bi12SiO20, Chem. Mater., 25, 48, 10.1021/cm3031363 Bellakki, 2009, Synthesis nad magnetic properties of BiFeO3 and Bi0.98Y0.02FeO3, Mater, Chem. Phys, 116, 599 Uniyal, 2009, Room temperature multiferroic properties of Eu doped BiFeO3, J. Appl. Phys, 105, 10.1063/1.3072087 Uniyal, 2009, Observation of the room temperature magnetoelectric effect in Dy doped BiFeO3,, J. Phys.: Condens. Matter, 21 García-Zaleta, 2014, Solid solutions of La-doped BiFeO3 obtained by the Pechini method with improvement in their properties, Ceram. Int., 40, 9225, 10.1016/j.ceramint.2014.01.143 Uniyal, 2009, Pr doped bismuth ferrite ceramics with enhanced multiferroic properties, J. Phys.: Condens. Matter, 21 Mahato, 2016, Structural studies and impedance spectroscopy of sol–gel derived Bi0.9Pr0.1FeO3 nanoceramics, J. Phys. Chem. Solids, 92, 45, 10.1016/j.jpcs.2016.01.010 Singh, 2013, Structural and optical properties of Pr doped BiFeO3 multiferroic ceramics, 1512, 462, 10.1063/1.4791111 Das, 2012, Enhanced ferroelectric, magnetoelectric, and magnetic properties in Pr and Cr co-doped BiFeO3 nanotubes fabricated by template assisted route, J. Appl. Phys., 111, 10.1063/1.4721810 Mukherjee, 2014, Enhanced magnetic and electrical properties of Y and Mn co-doped BiFeO3 nanoparticles, Physica B, 448, 199, 10.1016/j.physb.2014.03.082 Varshney, 2013, Structural, Raman and dielectric behavior in Bi1–xSrxFeO3 multiferroic, J. Mol. Struct, 1038, 242, 10.1016/j.molstruc.2013.01.065 M. Giot, A. Pautrat, O. Perez, C. Simon, M. Nevriva, M. Hervieu, Critical point of the competition between different orbital- and Bi lone pair-orderings in the Bi-rich part of the Bi–Ca–Mn–O system Solid State Sci. 8 (2006) 1414–1421. Woo, 2001, Correlations between the magnetic and structural properties of Ca-doped BiMnO3, Phys. Rev. B, 63, 10.1103/PhysRevB.63.134412 Kim, 2006, High temperature charge ordering in Bi1−xSrxMnO3 (0.45 ≤ x ≤ 0.8), Phys. Lett. A, 351, 368, 10.1016/j.physleta.2005.11.024 Garcıa-Munoz, 2002, Electronic and magnetic transitions in Bi–Sr–Mn–O oxides: high temperature charge-ordering, J. Magn. Magn. Mater., 242–245, 645, 10.1016/S0304-8853(01)01029-0 Frontera, 2003, Enhanced stability of charge-order in underdoped Bi0.75Sr0.25MnO3, Solid State Commun., 125, 277, 10.1016/S0038-1098(02)00660-9 Chen, 2012, Structural, magnetic, and electrical properties of Bi1−xLaxMnO3 (x= 0.0, 0.1, and 0.2) Solid Solutions, Chem. Mater., 24, 199, 10.1021/cm202900v Righi, 1999, Structure, magnetic and transport properties in La0.7−xBixCa0.3MnO3 (0.05 ≤ x ≤ 0.7) perovskites, J. Phys.: Condens. Matter, 11, 2831 Singh, 2016, ESR and magnetization studies of Bi-manganites, ch.10, Perovskite Materials - Synthesis, Characterisation, Properties, and Applications, Intech Kurian, 2008, Electron spin resonance and resistivity studies of charge-ordered Bi1-xCaxMnO3, J. Phys. D: Appl. Phys., 41, 10.1088/0022-3727/41/21/215006 Jun, 2005, Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO3 ceramics, Solid State Commun, 135, 133, 10.1016/j.ssc.2005.03.038 Kim, 2009, Enhanced magnetization in Co and Ta-substituted BiFeO3 ceramics, J. Magn. Magn. Mater., 321, 3262, 10.1016/j.jmmm.2009.05.059 Chang, 2007, Effect of Cr substitution on the structure and electrical properties of BiFeO3 ceramics, J. Phys. D: Appl. Phys, 40, 7799, 10.1088/0022-3727/40/24/031 Kim, 2010, Multiferroic properties of Ti-doped BiFeO3 ceramics, J. Korean Phys. Soc., 56, 439, 10.3938/jkps.56.439 Rao, 2015, Observation of coexistence of ferroelectric and antiferroelectric phases in Sc substituted BiFeO3, J. Alloy Compd., 642, 192, 10.1016/j.jallcom.2015.03.259 Belik, 2007, Effects of isovalent substitution in the manganese sublattice on magnetic, thermal, and structural properties of BiMnO3: BiMn1-xMxO3 (M = Al, Sc, Cr, Fe, Ga; 0 ≤ x ≤ 0.2), Inorg. Chem., 46, 5585, 10.1021/ic0701615 Bhardwaj, 2015, Optical and dielectric properties of BiMn1−xAExO3 (AE = Cr, Fe, Co, and Zn; x = 0, 0.1) nanoparticles synthesized by sol-gel technique, 10.1063/1.4929286 Yamada, 2006, Effect of Cr-doping on charge ordering stability in Bi1-xSrxMn1-yCryO3., J. Solid St. Chem., 179, 3121, 10.1016/j.jssc.2006.05.045 Shukla, 2008, Effect of Ti substitution on multiferroic properties of BiMn2O5, J. Appl. Phys., 104, 10.1063/1.2964072 Chandarak, 2011, Dielectric properties of BaTiO3-modified BiFeO3 ceramics, Ferroelectrics, 410, 75, 10.1080/00150193.2010.492724 Dash, 2013, Enhancement of dielectric and electrical properties of NaNbO3-modified BiFeO3, J. Mater. Sci.: Mater. Electron., 24, 3315 Wang, 2011, Multiferroism in orientational engineered (La, Mn) co-substituted BiFeO3, J. Appl. Phys., 109, 10.1063/1.3594745 Lorenz, 2014, Multiferroic BaTiO3–BiFeO3 composite thin films and multilayers: Strain engineering and magnetoelectric coupling, J. Phys. D: Appl. Phys., 47, 10.1088/0022-3727/47/13/135303 Behera, 2013, Impedance properties of 0.7(BiFeO3)-0.3(PbTiO3) composite, Adv. Mat. Lett., 4, 141, 10.5185/amlett.2012.6359 Castro, 2010, Synthesis, structural characterization, and properties of perovskites belonging to the xBiMnO3-(1–x) PbTiO3 System, Chem. Mater., 22, 541, 10.1021/cm903516t Bujakiewicz-Koronska, 2014, Electronic and magnetic properties of (Bi0.5Na0.5)(Mn0.5Nb0.5)O3, Phase Transit., 87, 1096, 10.1080/01411594.2014.953506 Ksepko, 2005, XPS examination of newly obtained (Na0.5Pb0.5)(Mn0.5Nb0.5)O3 ceramics, J. Alloys Comp, 386, 35, 10.1016/j.jallcom.2004.05.023 Molak, 2005, Electric permittivity and conductivity of (Na0.5Pb0.5)(Mn0.5Nb0.5)O3 ceramics, Sol. State Ionics, 176, 1439, 10.1016/j.ssi.2005.03.013 Molak, 2006, Properties of (Bi1/9Na2/3)(Mn1/3Nb2/3)O3 analysed within dielectric permittivity, conductivity, electric modulus and derivative techniques approach, Phase Transit, 79, 447, 10.1080/01411590600892336 Molak, 2008, Electrical Conduction Relaxation in the Bi(Mn1/3Nb2/3)O3 and (Bi1/9Na2/3)(Mn1/3Nb2/3)O3 ceramics, Ferroelectrics, 367, 179, 10.1080/00150190802375417 Molak, 2011, The estimation of the Mn atoms chemical bonding in (Na1-xBix)(Nb1-yMny)O3 ceramics and changeover in the electrical properties, Ferroelectrics, 418, 14, 10.1080/00150193.2011.578544 Ławniczak-Jabłonska, 2004, Study on the chemistry and structure of (Na(1-x)Bix)(Nb(1-y)Mny)O3 ceramics by XPS, AES and EPMA, MCA, 145, 95 Wolska, 2005, XANES Mn K edge in NaNbO3 based ceramic doped with Mn and Bi ions, Phys. Scripta T115, 989, 10.1238/Physica.Topical.115a00989 Spolnik, 2005, Investigation of the chemical composition of (Na1-xBix)(MnyNb1-y)O3 ceramics by single particle electron probe X-ray microanalysis with an application of Monte Carlo simulations, Spectrochim. Acta B, 60, 525, 10.1016/j.sab.2005.03.013 Molak, 2015, Electric features of PZT 70/30-BiMnO3 solid solution ceramics, J. Eur. Ceram. Soc., 35, 2513, 10.1016/j.jeurceramsoc.2015.02.025 Hwang, 2015, Multiferroic properties of stretchable BiFeO3 nano-composite film, Appl. Phys. Lett., 106, 10.1063/1.4907220 Bhadra, 2012, Synthesis of PVDF/BiFeO3 nanocomposite and observation of enhanced electrical conductivity and low-loss dielectric permittivity at percolation threshold, J. Polymer Sci. B: Polymer Phys, 50, 572, 10.1002/polb.23041 Mahato, 2017, Relaxations in doped PZT and epoxy-glue/Bi-Mn-O composite, Mat. Today: Proc. Molak, 2005, Electric modulus approach to analysis of the electric relaxation in highly conducting (Na0.75Bi0.25)(Mn0.25Nb0.75)O3 ceramics, J. Phys. D Appl. Phys., 38, 1450, 10.1088/0022-3727/38/9/019 Spaldin, 2003, Computational design of multifunctional materials, J. Solid St. Chem., 176, 10.1016/j.jssc.2003.07.001 Sando, 2016, A multiferroic on the brink: Uncovering the nuances of strain-induced transitions in BiFeO3, Appl. Phys. Rev., 3, 10.1063/1.4944558 Heron, 2014, Electric field control of magnetism using BiFeO3-based heterostructures, Appl. Phys. Rev., 1, 10.1063/1.4870957 Nan, 2008, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, J. Appl. Phys., 103, 10.1063/1.2836410 Zhong, 2004, Magnetodielectric effects in the ferroelectric ferromagnet, BiMnO3, J. Phys.: Condens. Matter, 16, 9059 Hu, 2011, Size-dependent electric voltage controlled magnetic anisotropy in multiferroic heterostructures: Interface-charge and strain comediated magnetoelectric coupling, Phys. Rev. B, 83, 10.1103/PhysRevB.83.134408 Park, 2007, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles, Nano Lett, 7, 766, 10.1021/nl063039w Kodama, 1999, Magnetic nanoparticles, J. Magn. Magn. Mater., 200, 359, 10.1016/S0304-8853(99)00347-9 Dey, 2006, Effect of grain size modulation on the magneto- and electronic-transport properties of La0.7Ca0.3MnO3 nanoparticles: The role of spin-polarized tunneling at the enhanced grain surface, Phys. Rev. B, 73, 10.1103/PhysRevB.73.214425 Hoffmann, 2008 Chu, 2007, Ferroelectric size effects in multiferroic thin films, Appl. Phys. Lett., 90, 10.1063/1.2750524 Zhong, 1993, Phase transition in PbTiO3 ultrafine particles of different sizes, J. Phys.: Condens. Mat., 5, 2619 Ishikawa, 1999, Surface relaxation in ferroelectric perovskite, Phys. Rev. B, 60, 11841, 10.1103/PhysRevB.60.11841 Fong, 2006, Stabilization of monodomain polarization in ultrathin PbTiO3 films, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.127601 Zhao, 2004, Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics, Phys. Rev. B, 70, 10.1103/PhysRevB.70.024107 Szot, 2014, Ch. 4 – Nature of the resistive switching phenomena in TiO2 and SrTiO3: Origin of the reversible insulator-metal transition, Solid State Phys, 65, 353, 10.1016/B978-0-12-800175-2.00004-2 Waser, 2007, Nanoionics-based resistive switching memories, Nature Mater, 6, 833, 10.1038/nmat2023 Sawa, 2008, Resistive switching in transition metal oxides, Mater. Today, 11, 28, 10.1016/S1369-7021(08)70119-6 Szot, 2006, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3, Nature Mater, 5, 312, 10.1038/nmat1614 Choi, 2009, Switchable ferroelectric diode and photovoltaic effect in BiFeO3, Science, 324, 63, 10.1126/science.1168636 Giniewicz, 2011, (Pb, Bi)(Ti, Fe, Mn )O3/Polymer 0-3 composites for hydrophone applications, Ferroelectrics, 73, 405, 10.1080/00150198708227936 Poghossian, 1991, Bismuth ferrites: New materials for semiconducting gas sensors, Sensors Actuat. B–Chem., 4, 545, 10.1016/0925-4005(91)80167-I Chen, 2008, Phase - field method of phase transitions/domain structures in ferroelectric thin films: A review, J. Am. Ceram. Soc., 91, 1835, 10.1111/j.1551-2916.2008.02413.x Martin, 2010, Engineering functionality in the multiferroic BiFeO3 – controlling chemistry to enable advanced applications, Dalton Trans, 39, 10813, 10.1039/c0dt00576b Lu, 2011, Theoretical analysis of electric, magnetic and magnetoelectric properties of nano-structured multiferroic composites, J. Mech. Phys. Solids, 59, 1966, 10.1016/j.jmps.2011.07.007 Vopson, 2013, Theory of giant-caloric effects in multiferroic materials, J. Phys. D: Apel. Phys., 46, 10.1088/0022-3727/46/34/345304