Stability of g-frames
Tài liệu tham khảo
Aldroubi, 2004, Wavelets on irregular grids with arbitrary dilation matrices and frame atomics for L2(Rd), Appl. Comput. Harmon. Anal., 17, 119, 10.1016/j.acha.2004.03.005
Asgari, 2005, Frames and bases of subspaces in Hilbert spaces, J. Math. Anal. Appl., 308, 541, 10.1016/j.jmaa.2004.11.036
Casazza, 2004, Frames of subspaces, vol. 345, 87
Casazza, 1997, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl., 3, 543, 10.1007/BF02648883
Christensen, 2003
Christensen, 2004, Oblique dual frames and shift-invariant spaces, Appl. Comput. Harmon. Anal., 17, 48, 10.1016/j.acha.2003.12.003
Daubechies, 1992
Dörfler, 2006, Time-frequency partitions for the Gelfand triple (S0,L2,S0′), Math. Scand., 98, 81, 10.7146/math.scand.a-14985
Duffin, 1952, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72, 341, 10.1090/S0002-9947-1952-0047179-6
Eldar, 2003, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier Anal. Appl., 9, 77, 10.1007/s00041-003-0004-2
Favier, 1995, On the stability of frames and Riesz bases, Appl. Comput. Harmon. Anal., 2, 160, 10.1006/acha.1995.1012
H.G. Feichtinger, W. Sun, Stability of Gabor frames with arbitrary sampling points, preprint
Fornasier, 2004, Quasi-orthogonal decompositions of structured frames, J. Math. Anal. Appl., 289, 180, 10.1016/j.jmaa.2003.09.041
Fornasier, 2003, Decompositions of Hilbert spaces: Local construction of global frames, 275
Frank, 2000, A module frame concept for Hilbert C∗-modules, vol. 247, 207
Frank, 2002, Symmetric approximation of frames, Trans. Amer. Math. Soc., 354, 777, 10.1090/S0002-9947-01-02838-0
Li, 2004, Pseudoframes for subspaces with applications, J. Fourier Anal. Appl., 10, 409, 10.1007/s00041-004-3039-0
Oswald, 1994, Multilevel Finite Element Approximation: Theory and Application
Sun
Sun, 2001, On the stability of Gabor frames, Adv. in Appl. Math., 26, 181, 10.1006/aama.2000.0715
Sun, 2002, Irregular wavelet/Gabor frames, Appl. Comput. Harmon. Anal., 13, 63, 10.1016/S1063-5203(02)00002-7
Young, 1980